Classical Summability Theory [electronic resource] / by P.N. Natarajan.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Singapore : Springer Singapore : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XI, 130 p. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9789811042058
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 515.24 23
Класифікація Бібліотеки Конгресу:
  • QA292
  • QA295
Електронне місцезнаходження та доступ:
Вміст:
Chapter 1. Brief Introduction, General Summability Theory and Steinhaus Type Theorems -- Chapter 2. Core of a Sequence and the Matrix Class -- Chapter 3. Special Summability Methods -- Chapter 4. More Properties of the Method and Cauchy Multiplication of Certain Summable Series -- Chapter 5. The Silverman-Toeplitz, Schur's and Steinhaus Theorems for 4-dimensional Infinite Matrices -- Chapter 6. The Norlund, Weighted Mean and Methods for Double Sequences.
У: Springer eBooksЗведення: This book presents results about certain summability methods, such as the Abel method, the Norlund method, the Weighted mean method, the Euler method and the Natarajan method, which have not appeared in many standard books. It proves a few results on the Cauchy multiplication of certain summable series and some product theorems. It also proves a number of Steinhaus type theorems. In addition, it introduces a new definition of convergence of a double sequence and double series and proves the Silverman-Toeplitz theorem for four-dimensional infinite matrices, as well as Schur's and Steinhaus theorems for four-dimensional infinite matrices. The Norlund method, the Weighted mean method and the Natarajan method for double sequences are also discussed in the context of the new definition. Divided into six chapters, the book supplements the material already discussed in G.H.Hardy's Divergent Series. It appeals to young researchers and experienced mathematicians who wish to explore new areas in Summability Theory.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Chapter 1. Brief Introduction, General Summability Theory and Steinhaus Type Theorems -- Chapter 2. Core of a Sequence and the Matrix Class -- Chapter 3. Special Summability Methods -- Chapter 4. More Properties of the Method and Cauchy Multiplication of Certain Summable Series -- Chapter 5. The Silverman-Toeplitz, Schur's and Steinhaus Theorems for 4-dimensional Infinite Matrices -- Chapter 6. The Norlund, Weighted Mean and Methods for Double Sequences.

This book presents results about certain summability methods, such as the Abel method, the Norlund method, the Weighted mean method, the Euler method and the Natarajan method, which have not appeared in many standard books. It proves a few results on the Cauchy multiplication of certain summable series and some product theorems. It also proves a number of Steinhaus type theorems. In addition, it introduces a new definition of convergence of a double sequence and double series and proves the Silverman-Toeplitz theorem for four-dimensional infinite matrices, as well as Schur's and Steinhaus theorems for four-dimensional infinite matrices. The Norlund method, the Weighted mean method and the Natarajan method for double sequences are also discussed in the context of the new definition. Divided into six chapters, the book supplements the material already discussed in G.H.Hardy's Divergent Series. It appeals to young researchers and experienced mathematicians who wish to explore new areas in Summability Theory.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.