Guide to Convolutional Neural Networks [electronic resource] : A Practical Application to Traffic-Sign Detection and Classification / by Hamed Habibi Aghdam, Elnaz Jahani Heravi.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XXIII, 282 p. 150 illus., 111 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319575506
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 006.4 23
Класифікація Бібліотеки Конгресу:
  • Q337.5
  • TK7882.P3
Електронне місцезнаходження та доступ:
Вміст:
Traffic Sign Detection and Recognition -- Pattern Classification -- Convolutional Neural Networks -- Caffe Library -- Classification of Traffic Signs -- Detecting Traffic Signs -- Visualizing Neural Networks -- Appendix A: Gradient Descend.
У: Springer eBooksЗведення: This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis. Topics and features: Explains the fundamental concepts behind training linear classifiers and feature learning Discusses the wide range of loss functions for training binary and multi-class classifiers Illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks Presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks Describes two real-world examples of the detection and classification of traffic signs using deep learning methods Examines a range of varied techniques for visualizing neural networks, using a Python interface Provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Traffic Sign Detection and Recognition -- Pattern Classification -- Convolutional Neural Networks -- Caffe Library -- Classification of Traffic Signs -- Detecting Traffic Signs -- Visualizing Neural Networks -- Appendix A: Gradient Descend.

This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis. Topics and features: Explains the fundamental concepts behind training linear classifiers and feature learning Discusses the wide range of loss functions for training binary and multi-class classifiers Illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks Presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks Describes two real-world examples of the detection and classification of traffic signs using deep learning methods Examines a range of varied techniques for visualizing neural networks, using a Python interface Provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.