Data-Driven Fault Detection for Industrial Processes [electronic resource] : Canonical Correlation Analysis and Projection Based Methods / by Zhiwen Chen.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2017Видання: 1st ed. 2017Опис: XIX, 112 p. 39 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783658167561
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 629.8 23
Класифікація Бібліотеки Конгресу:
  • TJ212-225
Електронне місцезнаходження та доступ:
Вміст:
A New Index for Performance Evaluation of FD Methods -- CCA-based FD Method for the Monitoring of Stationary Processes -- Projection-based FD Method for the Monitoring of Dynamic Processes -- Benchmark Study and Real-Time Implementation. .
У: Springer eBooksЗведення: Zhiwen Chen aims to develop advanced fault detection (FD) methods for the monitoring of industrial processes. With the ever increasing demands on reliability and safety in industrial processes, fault detection has become an important issue. Although the model-based fault detection theory has been well studied in the past decades, its applications are limited to large-scale industrial processes because it is difficult to build accurate models. Furthermore, motivated by the limitations of existing data-driven FD methods, novel canonical correlation analysis (CCA) and projection-based methods are proposed from the perspectives of process input and output data, less engineering effort and wide application scope. For performance evaluation of FD methods, a new index is also developed. Contents A New Index for Performance Evaluation of FD Methods CCA-based FD Method for the Monitoring of Stationary Processes Projection-based FD Method for the Monitoring of Dynamic Processes Benchmark Study and Real-Time Implementation Target Groups Researchers and students in the field of process control and statistical hypothesis testing Research and development engineers in the process industry About the Author Zhiwen Chen’s research interests include multivariate statistical process monitoring, model-based and data-driven fault diagnosis as well as their application to industrial processes. He is currently working at the School of Information Science and Engineering at Central South University, China.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

A New Index for Performance Evaluation of FD Methods -- CCA-based FD Method for the Monitoring of Stationary Processes -- Projection-based FD Method for the Monitoring of Dynamic Processes -- Benchmark Study and Real-Time Implementation. .

Zhiwen Chen aims to develop advanced fault detection (FD) methods for the monitoring of industrial processes. With the ever increasing demands on reliability and safety in industrial processes, fault detection has become an important issue. Although the model-based fault detection theory has been well studied in the past decades, its applications are limited to large-scale industrial processes because it is difficult to build accurate models. Furthermore, motivated by the limitations of existing data-driven FD methods, novel canonical correlation analysis (CCA) and projection-based methods are proposed from the perspectives of process input and output data, less engineering effort and wide application scope. For performance evaluation of FD methods, a new index is also developed. Contents A New Index for Performance Evaluation of FD Methods CCA-based FD Method for the Monitoring of Stationary Processes Projection-based FD Method for the Monitoring of Dynamic Processes Benchmark Study and Real-Time Implementation Target Groups Researchers and students in the field of process control and statistical hypothesis testing Research and development engineers in the process industry About the Author Zhiwen Chen’s research interests include multivariate statistical process monitoring, model-based and data-driven fault diagnosis as well as their application to industrial processes. He is currently working at the School of Information Science and Engineering at Central South University, China.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.