Advances in Time Series Analysis and Forecasting [electronic resource] : Selected Contributions from ITISE 2016 / edited by Ignacio Rojas, Héctor Pomares, Olga Valenzuela.

Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Contributions to StatisticsПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XV, 414 p. 112 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319557892
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 330.015195 23
Класифікація Бібліотеки Конгресу:
  • QA276-280
Електронне місцезнаходження та доступ:
Вміст:
Preface -- Part I: Analysis of Irregularly Sampled Time Series: Techniques, Algorithms and Case Studies -- Scientific Contributions -- Part II: Multi-scale Analysis of Univariate and Multivariate Time Series -- Scientific Contributions -- Part III: Linear and Non-linear Time Series Models -- Scientific Contributions -- Part IV: Advanced Time Series Forecasting Methods -- Scientific Contributions -- Part V: Applications in Time Series Analysis and Forecasting -- Scientific Contributions -- Author Index.
У: Springer eBooksЗведення: This volume of selected and peer-reviewed contributions on the latest developments in time series analysis and forecasting updates the reader on topics such as analysis of irregularly sampled time series, multi-scale analysis of univariate and multivariate time series, linear and non-linear time series models, advanced time series forecasting methods, applications in time series analysis and forecasting, advanced methods and online learning in time series and high-dimensional and complex/big data time series. The contributions were originally presented at the International Work-Conference on Time Series, ITISE 2016, held in Granada, Spain, June 27-29, 2016. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting.  It focuses on interdisciplinary and multidisciplinary rese arch encompassing the disciplines of computer science, mathematics, statistics and econometrics.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Preface -- Part I: Analysis of Irregularly Sampled Time Series: Techniques, Algorithms and Case Studies -- Scientific Contributions -- Part II: Multi-scale Analysis of Univariate and Multivariate Time Series -- Scientific Contributions -- Part III: Linear and Non-linear Time Series Models -- Scientific Contributions -- Part IV: Advanced Time Series Forecasting Methods -- Scientific Contributions -- Part V: Applications in Time Series Analysis and Forecasting -- Scientific Contributions -- Author Index.

This volume of selected and peer-reviewed contributions on the latest developments in time series analysis and forecasting updates the reader on topics such as analysis of irregularly sampled time series, multi-scale analysis of univariate and multivariate time series, linear and non-linear time series models, advanced time series forecasting methods, applications in time series analysis and forecasting, advanced methods and online learning in time series and high-dimensional and complex/big data time series. The contributions were originally presented at the International Work-Conference on Time Series, ITISE 2016, held in Granada, Spain, June 27-29, 2016. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting.  It focuses on interdisciplinary and multidisciplinary rese arch encompassing the disciplines of computer science, mathematics, statistics and econometrics.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.