Characterizing Interdependencies of Multiple Time Series [electronic resource] : Theory and Applications / by Yuzo Hosoya, Kosuke Oya, Taro Takimoto, Ryo Kinoshita.
Вид матеріалу:
Текст Серія: JSS Research Series in StatisticsПублікація: Singapore : Springer Singapore : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: X, 133 p. 32 illus. online resourceТип вмісту: - text
- computer
- online resource
- 9789811064364
- Statistics
- Statistical Theory and Methods
- Statistics for Life Sciences, Medicine, Health Sciences
- Statistics for Business, Management, Economics, Finance, Insurance
- Statistics for Social Sciences, Humanities, Law
- Statistics and Computing/Statistics Programs
- Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
- 519.5 23
- QA276-280
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
1: Introduction to statistical causal analysis -- 2: Measures of one-way effect, reciprocity and association -- 3: Partial measures of interdependence -- 4: Inference based on the vector autoregressive and moving average model -- 5: Inference on change in causality measures -- 6: Simulation performance of estimation methods -- 7: Empirical analysis of macroeconomic series -- 8: Empirical analysis of change in causality measures -- 9: Conclusion -- Appendix -- References -- Index.
This book introduces academic researchers and professionals to the basic concepts and methods for characterizing interdependencies of multiple time series in the frequency domain. Detecting causal directions between a pair of time series and the extent of their effects, as well as testing the non existence of a feedback relation between them, have constituted major focal points in multiple time series analysis since Granger introduced the celebrated definition of causality in view of prediction improvement. Causality analysis has since been widely applied in many disciplines. Although most analyses are conducted from the perspective of the time domain, a frequency domain method introduced in this book sheds new light on another aspect that disentangles the interdependencies between multiple time series in terms of long-term or short-term effects, quantitatively characterizing them. The frequency domain method includes the Granger noncausality test as a special case. Chapters 2 and 3 of the book introduce an improved version of the basic concepts for measuring the one-way effect, reciprocity, and association of multiple time series, which were originally proposed by Hosoya. Then the statistical inferences of these measures are presented, with a focus on the stationary multivariate autoregressive moving-average processes, which include the estimation and test of causality change. Empirical analyses are provided to illustrate what alternative aspects are detected and how the methods introduced here can be conveniently applied. Most of the materials in Chapters 4 and 5 are based on the authors' latest research work. Subsidiary items are collected in the Appendix.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.