Lectures on Convex Geometry [electronic resource] / by Daniel Hug, Wolfgang Weil.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Graduate Texts in Mathematics ; 286Публікація: Cham : Springer International Publishing : Imprint: Springer, 2020Видання: 1st ed. 2020Опис: XVIII, 287 p. 11 illus., 9 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783030501808
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 516.1 23
Класифікація Бібліотеки Конгресу:
  • QA639.5-640.7
  • QA640.7-640.77
Електронне місцезнаходження та доступ:
Вміст:
Preface -- Preliminaries and Notation -- 1. Convex Sets -- 2. Convex Functions -- 3. Brunn-Minkowski Theory -- 4. From Area Measures to Valuations -- 5. Integral Geometric Formulas.-6. Solutions of Selected Exercises -- References -- Index.
У: Springer Nature eBookЗведення: This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Preface -- Preliminaries and Notation -- 1. Convex Sets -- 2. Convex Functions -- 3. Brunn-Minkowski Theory -- 4. From Area Measures to Valuations -- 5. Integral Geometric Formulas.-6. Solutions of Selected Exercises -- References -- Index.

This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.