The Geometric Hopf Invariant and Surgery Theory (Запис № 447894)

МАРК-запис
000 -LEADER
fixed length control field 04038nam a22005895i 4500
001 - CONTROL NUMBER
control field 978-3-319-71306-9
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20210118131652.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180125s2017 gw | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783319713069
-- 978-3-319-71306-9
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1007/978-3-319-71306-9
Source of number or code doi
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA612-612.8
072 #7 - SUBJECT CATEGORY CODE
Subject category code PBPD
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code MAT038000
Source bisacsh
072 #7 - SUBJECT CATEGORY CODE
Subject category code PBPD
Source thema
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 514.2
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Crabb, Michael.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
245 14 - TITLE STATEMENT
Title The Geometric Hopf Invariant and Surgery Theory
Medium [electronic resource] /
Statement of responsibility, etc by Michael Crabb, Andrew Ranicki.
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2017.
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2017.
300 ## - PHYSICAL DESCRIPTION
Extent XVI, 397 p. 1 illus. in color.
Other physical details online resource.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
490 1# - SERIES STATEMENT
Series statement Springer Monographs in Mathematics,
Міжнародний стандартний серійний номер для назви серії (ISSN) 1439-7382
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 1 The difference construction -- 2 Umkehr maps and inner product spaces -- 3 Stable homotopy theory -- 4 Z_2-equivariant homotopy and bordism theory -- 5 The geometric Hopf invariant -- 6 The double point theorem -- 7 The -equivariant geometric Hopf invariant -- 8 Surgery obstruction theory -- A The homotopy Umkehr map -- B Notes on Z2-bordism -- C The geometric Hopf invariant and double points (2010) -- References -- Index.
520 ## - SUMMARY, ETC.
Summary, etc Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new. .
506 ## - RESTRICTIONS ON ACCESS NOTE
Terms governing access Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
506 ## - RESTRICTIONS ON ACCESS NOTE
Standardized terminology for access restriction Online access from local network of NaUOA.
506 ## - RESTRICTIONS ON ACCESS NOTE
Standardized terminology for access restriction Online access with authorization at https://link.springer.com/
506 ## - RESTRICTIONS ON ACCESS NOTE
Standardized terminology for access restriction Онлайн-доступ з локальної мережі НаУОА.
506 ## - RESTRICTIONS ON ACCESS NOTE
Standardized terminology for access restriction Онлайн доступ з авторизацією на https://link.springer.com/
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Algebraic topology.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Manifolds (Mathematics).
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Complex manifolds.
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Algebraic Topology.
-- http://scigraph.springernature.com/things/product-market-codes/M28019
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Manifolds and Cell Complexes (incl. Diff.Topology).
-- http://scigraph.springernature.com/things/product-market-codes/M28027
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Ranicki, Andrew.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer eBooks
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Printed edition:
International Standard Book Number 9783319713052
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Printed edition:
International Standard Book Number 9783319713076
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Printed edition:
International Standard Book Number 9783319890616
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Springer Monographs in Mathematics,
-- 1439-7382
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://doi.org/10.1007/978-3-319-71306-9">https://doi.org/10.1007/978-3-319-71306-9</a>
912 ## -
-- ZDB-2-SMA
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type ЕКнига

Немає доступних примірників.