An Introduction to Machine Learning [electronic resource] / by Miroslav Kubat.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 2nd ed. 2017Опис: XIII, 348 p. 85 illus., 3 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319639130
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 006.312 23
Класифікація Бібліотеки Конгресу:
  • QA76.9.D343
Електронне місцезнаходження та доступ:
Вміст:
1 A Simple Machine-Learning Task -- 2 Probabilities: Bayesian Classifiers -- Similarities: Nearest-Neighbor Classifiers -- 4 Inter-Class Boundaries: Linear and Polynomial Classifiers -- 5 Artificial Neural Networks -- 6 Decision Trees -- 7 Computational Learning Theory -- 8 A Few Instructive Applications -- 9 Induction of Voting Assemblies -- 10 Some Practical Aspects to Know About -- 11 Performance Evaluation -- 12 Statistical Significance -- 13 Induction in Multi-Label Domains -- 14 Unsupervised Learning -- 15 Classifiers in the Form of Rulesets -- 16 The Genetic Algorithm -- 17 Reinforcement Learning.
У: Springer eBooksЗведення: This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. This revised edition contains three entirely new chapters on critical topics regarding the pragmatic application of machine learning in industry. The chapters examine multi-label domains, unsupervised learning and its use in deep learning, and logical approaches to induction as well as Inductive Logic Programming. Numerous chapters have been expanded, and the presentation of the material has been enhanced. The book contains many new exercises, numerous solved examples, thought-provoking experiments, and computer assignments for independent work.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

1 A Simple Machine-Learning Task -- 2 Probabilities: Bayesian Classifiers -- Similarities: Nearest-Neighbor Classifiers -- 4 Inter-Class Boundaries: Linear and Polynomial Classifiers -- 5 Artificial Neural Networks -- 6 Decision Trees -- 7 Computational Learning Theory -- 8 A Few Instructive Applications -- 9 Induction of Voting Assemblies -- 10 Some Practical Aspects to Know About -- 11 Performance Evaluation -- 12 Statistical Significance -- 13 Induction in Multi-Label Domains -- 14 Unsupervised Learning -- 15 Classifiers in the Form of Rulesets -- 16 The Genetic Algorithm -- 17 Reinforcement Learning.

This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. This revised edition contains three entirely new chapters on critical topics regarding the pragmatic application of machine learning in industry. The chapters examine multi-label domains, unsupervised learning and its use in deep learning, and logical approaches to induction as well as Inductive Logic Programming. Numerous chapters have been expanded, and the presentation of the material has been enhanced. The book contains many new exercises, numerous solved examples, thought-provoking experiments, and computer assignments for independent work.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.