TY - BOOK AU - Larbani,Moussa AU - Yu,Po-Lung ED - SpringerLink (Online service) TI - Wonderful Solutions and Habitual Domains for Challenging Problems in Changeable Spaces: From Theoretical Framework to Applications SN - 9789811019814 AV - HD30.23 U1 - 658.40301 23 PY - 2017/// CY - Singapore PB - Springer Singapore, Imprint: Springer KW - Operations research KW - Decision making KW - Management KW - Mathematical optimization KW - Industrial management KW - Artificial intelligence KW - Operations Research/Decision Theory KW - Optimization KW - Innovation/Technology Management KW - Artificial Intelligence N1 - Chapter 1: Challenging Decision Problems and Decision Models -- Chapter 2: Decision Processes and Decision Making in Changeable Spaces -- Chapter 3: Habitual Domains, Human Behaviour Mechanism and Wonderful Solutions for DMCS Problem Analysis -- Chapter 4: Expansion of Habitual Domains and DMCS -- Chapter 5: Competence Set Analysis, Decision Blinds and Decision-Making -- Chapter 6: Decision-Making in Changeable Spaces (DMCS): A New Paradigm -- Chapter 7: Solving Real-World DMCS Problems - Part 1: Management and Economics Problems -- Chapter 8. Solving Real World DMCS Problems - Part 2: Social, Geopolitical and Discovery Problems -- Chapter 9: Innovation Dynamics as a DMCS Problem -- Chapter 10: Conclusion and Further Research; Available to subscribing member institutions only. Доступно лише організаціям членам підписки N2 - This book introduces a new paradigm called ‘Optimization in Changeable Spaces’ (OCS) as a useful tool for decision making and problem solving. It illustrates how OCS incorporates, searches, and constructively restructures the parameters, tangible and intangible, involved in the process of decision making. The book elaborates on OCS problems that can be modeled and solved effectively by using the concepts of competence set analysis, Habitual Domain (HD) and the mental operators called the 7-8-9 principles of deep knowledge of HD. In addition, new concepts of covering and discovering processes are proposed and formulated as mathematical tools to solve OCS problems. The book also includes reformulations of a number of illustrative real-life challenging problems that cannot be solved by traditional optimization techniques into OCS problems, and details how they can be addressed. Beyond that, it also includes perspectives related to innovation dynamics, management, artificial intelligence, artificial and e-economics, scientific discovery and knowledge extraction. This book will be of interest to managers of businesses and institutions, policy makers, and educators and students of decision making and behavior in DBA and/or MBA UR - https://doi.org/10.1007/978-981-10-1981-4 ER -