Photonic Neural Networks with Spatiotemporal Dynamics [electronic resource] : Paradigms of Computing and Implementation / edited by Hideyuki Suzuki, Jun Tanida, Masanori Hashimoto.

Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Singapore : Springer Nature Singapore : Imprint: Springer, 2024Видання: 1st ed. 2024Опис: VIII, 278 p. 128 illus., 108 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9789819950720
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 006.3 23
Класифікація Бібліотеки Конгресу:
  • Q334-342
  • TA347.A78
Електронне місцезнаходження та доступ:
Вміст:
Revival of Optical Computing -- Nonlinear Dynamics of Recurrent Neural Networks for Computing -- Fluorescence Energy Transfer Computing -- Quantum-Dot Based Photonic Reservoir Computing -- Exploring Integrated Device Implementation for FRET-based Optical Reservoir Computing -- FRET Networks -- Quantum Walk on FRET Networks -- Spatial photonic Ising machine with time/space division multiplexing -- Computing using Oscillatory Phenomena -- Sampling-like Dynamics of the Nonlinear Dynamical System Combined with Optimization -- Reservoir Computing Based on Iterative Function Systems -- Bridging the Gap between Reservoirs and Neural Networks -- Brain-Inspired Reservoir Computing Models.
У: Springer Nature eBookЗведення: This open access book presents an overview of recent advances in photonic neural networks with spatiotemporal dynamics. The computing and implementation paradigms presented in this book are outcomes of interdisciplinary studies by collaborative researchers from the three fields of nonlinear mathematical science, information photonics, and integrated systems engineering. This book offers novel multidisciplinary viewpoints on photonic neural networks, illustrating recent advances in three types of computing methodologies: fluorescence energy transfer computing, spatial-photonic spin system, and photonic reservoir computing. The book consists of four parts: Part I introduces the backgrounds of optical computing and neural network dynamics; Part II presents fluorescence energy transfer computing, a novel computing technology based on nanoscale networks of fluorescent particles; Parts III and IV review the models and implementation of spatial-photonic spin systems andphotonic reservoir computing, respectively. These contents are beneficial to researchers in a broad range of fields, including information science, mathematical science, applied physics, and engineering, to better understand the novel computing concepts of photonic neural networks with spatiotemporal dynamics.
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Revival of Optical Computing -- Nonlinear Dynamics of Recurrent Neural Networks for Computing -- Fluorescence Energy Transfer Computing -- Quantum-Dot Based Photonic Reservoir Computing -- Exploring Integrated Device Implementation for FRET-based Optical Reservoir Computing -- FRET Networks -- Quantum Walk on FRET Networks -- Spatial photonic Ising machine with time/space division multiplexing -- Computing using Oscillatory Phenomena -- Sampling-like Dynamics of the Nonlinear Dynamical System Combined with Optimization -- Reservoir Computing Based on Iterative Function Systems -- Bridging the Gap between Reservoirs and Neural Networks -- Brain-Inspired Reservoir Computing Models.

Open Access

This open access book presents an overview of recent advances in photonic neural networks with spatiotemporal dynamics. The computing and implementation paradigms presented in this book are outcomes of interdisciplinary studies by collaborative researchers from the three fields of nonlinear mathematical science, information photonics, and integrated systems engineering. This book offers novel multidisciplinary viewpoints on photonic neural networks, illustrating recent advances in three types of computing methodologies: fluorescence energy transfer computing, spatial-photonic spin system, and photonic reservoir computing. The book consists of four parts: Part I introduces the backgrounds of optical computing and neural network dynamics; Part II presents fluorescence energy transfer computing, a novel computing technology based on nanoscale networks of fluorescent particles; Parts III and IV review the models and implementation of spatial-photonic spin systems andphotonic reservoir computing, respectively. These contents are beneficial to researchers in a broad range of fields, including information science, mathematical science, applied physics, and engineering, to better understand the novel computing concepts of photonic neural networks with spatiotemporal dynamics.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.