Differential Geometry [electronic resource] : From Elastic Curves to Willmore Surfaces / by Ulrich Pinkall, Oliver Gross.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Compact Textbooks in MathematicsПублікація: Cham : Springer International Publishing : Imprint: Birkhäuser, 2024Видання: 1st ed. 2024Опис: XI, 203 p. 80 illus., 66 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783031398384
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 516.36 23
Класифікація Бібліотеки Конгресу:
  • QA641-670
Електронне місцезнаходження та доступ: У: Springer Nature eBookЗведення: This open access book covers the main topics for a course on the differential geometry of curves and surfaces. Unlike the common approach in existing textbooks, there is a strong focus on variational problems, ranging from elastic curves to surfaces that minimize area, or the Willmore functional. Moreover, emphasis is given on topics that are useful for applications in science and computer graphics. Most often these applications are concerned with finding the shape of a curve or a surface that minimizes physically meaningful energy. Manifolds are not introduced as such, but the presented approach provides preparation and motivation for a follow-up course on manifolds, and topics like the Gauss-Bonnet theorem for compact surfaces are covered.
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Open Access

This open access book covers the main topics for a course on the differential geometry of curves and surfaces. Unlike the common approach in existing textbooks, there is a strong focus on variational problems, ranging from elastic curves to surfaces that minimize area, or the Willmore functional. Moreover, emphasis is given on topics that are useful for applications in science and computer graphics. Most often these applications are concerned with finding the shape of a curve or a surface that minimizes physically meaningful energy. Manifolds are not introduced as such, but the presented approach provides preparation and motivation for a follow-up course on manifolds, and topics like the Gauss-Bonnet theorem for compact surfaces are covered.

Accessibility summary: This PDF does not fully comply with PDF/UA standards, but does feature limited screen reader support, described non-text content (images, graphs), bookmarks for easy navigation and searchable, selectable text. Users of assistive technologies may experience difficulty navigating or interpreting content in this document. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com.

No reading system accessibility options actively disabled

Publisher contact for further accessibility information: accessibilitysupport@springernature.com

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.