Metric Algebraic Geometry [electronic resource] / by Paul Breiding, Kathlén Kohn, Bernd Sturmfels.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Oberwolfach Seminars ; 53Публікація: Cham : Springer Nature Switzerland : Imprint: Birkhäuser, 2024Видання: 1st ed. 2024Опис: XIV, 215 p. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783031514623
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 516.35 23
Класифікація Бібліотеки Конгресу:
  • QA564-609
Електронне місцезнаходження та доступ:
Вміст:
Preface -- Historical Snapshot -- Critical Equations -- Computations -- Polar Degrees -- Wasserstein Distance -- Curvature -- Reach and Offset -- Voronoi Cells -- Condition Numbers -- Machine Learning -- Maximum Likelihood -- Tensors -- Computer Vision -- Volumes of Semialgebraic Sets -- Sampling -- References.
У: Springer Nature eBookЗведення: Metric algebraic geometry combines concepts from algebraic geometry and differential geometry. Building on classical foundations, it offers practical tools for the 21st century. Many applied problems center around metric questions, such as optimization with respect to distances. After a short dive into 19th-century geometry of plane curves, we turn to problems expressed by polynomial equations over the real numbers. The solution sets are real algebraic varieties. Many of our metric problems arise in data science, optimization and statistics. These include minimizing Wasserstein distances in machine learning, maximum likelihood estimation, computing curvature, or minimizing the Euclidean distance to a variety. This book addresses a wide audience of researchers and students and can be used for a one-semester course at the graduate level. The key prerequisite is a solid foundation in undergraduate mathematics, especially in algebra and geometry. This is an open access book.
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Preface -- Historical Snapshot -- Critical Equations -- Computations -- Polar Degrees -- Wasserstein Distance -- Curvature -- Reach and Offset -- Voronoi Cells -- Condition Numbers -- Machine Learning -- Maximum Likelihood -- Tensors -- Computer Vision -- Volumes of Semialgebraic Sets -- Sampling -- References.

Open Access

Metric algebraic geometry combines concepts from algebraic geometry and differential geometry. Building on classical foundations, it offers practical tools for the 21st century. Many applied problems center around metric questions, such as optimization with respect to distances. After a short dive into 19th-century geometry of plane curves, we turn to problems expressed by polynomial equations over the real numbers. The solution sets are real algebraic varieties. Many of our metric problems arise in data science, optimization and statistics. These include minimizing Wasserstein distances in machine learning, maximum likelihood estimation, computing curvature, or minimizing the Euclidean distance to a variety. This book addresses a wide audience of researchers and students and can be used for a one-semester course at the graduate level. The key prerequisite is a solid foundation in undergraduate mathematics, especially in algebra and geometry. This is an open access book.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.