Probability in Electrical Engineering and Computer Science [electronic resource] : An Application-Driven Course / by Jean Walrand.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Cham : Springer International Publishing : Imprint: Springer, 2021Видання: 1st ed. 2021Опис: XXI, 380 p. 214 illus., 146 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783030499952
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 004.0151 23
Класифікація Бібліотеки Конгресу:
  • QA76.9.M35
  • QA276-280
Електронне місцезнаходження та доступ:
Вміст:
Chapter 1. Page Rank - A -- Chapter 2. Page Rank - B -- Chapter 3. Multiplexing - A -- Chapter 4. Multiplexing - B -- Chapter 5. Networks - A -- Chapter 6. Networks - B -- Chapter 7. Digital Link - A -- Chapter 8. Digital Link - B -- Chapter 9. Tracking - A -- Chapter 10. Tracking - B -- Chapter 11. Speech Recognition - A -- Chapter 12. Speech Recognition - B -- Chapter 13. Route planning - A -- Chapter 14. Route Planning - B -- chapter 15. Perspective & Complements -- A. Elementary Probability -- B. Basic Probability -- . Index.
У: Springer Nature eBookЗведення: This revised textbook motivates and illustrates the techniques of applied probability by applications in electrical engineering and computer science (EECS). The author presents information processing and communication systems that use algorithms based on probabilistic models and techniques, including web searches, digital links, speech recognition, GPS, route planning, recommendation systems, classification, and estimation. He then explains how these applications work and, along the way, provides the readers with the understanding of the key concepts and methods of applied probability. Python labs enable the readers to experiment and consolidate their understanding. The book includes homework, solutions, and Jupyter notebooks. This edition includes new topics such as Boosting, Multi-armed bandits, statistical tests, social networks, queuing networks, and neural networks. The companion website now has many examples of Python demos and also Python labs used in Berkeley. Showcases techniques of applied probability with applications in EE and CS; Presents all topics with concrete applications so students see the relevance of the theory; Illustrates methods with Jupyter notebooks that use widgets to enable the users to modify parameters.
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Chapter 1. Page Rank - A -- Chapter 2. Page Rank - B -- Chapter 3. Multiplexing - A -- Chapter 4. Multiplexing - B -- Chapter 5. Networks - A -- Chapter 6. Networks - B -- Chapter 7. Digital Link - A -- Chapter 8. Digital Link - B -- Chapter 9. Tracking - A -- Chapter 10. Tracking - B -- Chapter 11. Speech Recognition - A -- Chapter 12. Speech Recognition - B -- Chapter 13. Route planning - A -- Chapter 14. Route Planning - B -- chapter 15. Perspective & Complements -- A. Elementary Probability -- B. Basic Probability -- . Index.

Open Access

This revised textbook motivates and illustrates the techniques of applied probability by applications in electrical engineering and computer science (EECS). The author presents information processing and communication systems that use algorithms based on probabilistic models and techniques, including web searches, digital links, speech recognition, GPS, route planning, recommendation systems, classification, and estimation. He then explains how these applications work and, along the way, provides the readers with the understanding of the key concepts and methods of applied probability. Python labs enable the readers to experiment and consolidate their understanding. The book includes homework, solutions, and Jupyter notebooks. This edition includes new topics such as Boosting, Multi-armed bandits, statistical tests, social networks, queuing networks, and neural networks. The companion website now has many examples of Python demos and also Python labs used in Berkeley. Showcases techniques of applied probability with applications in EE and CS; Presents all topics with concrete applications so students see the relevance of the theory; Illustrates methods with Jupyter notebooks that use widgets to enable the users to modify parameters.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.