Fundamentals of Clinical Data Science [electronic resource] / edited by Pieter Kubben, Michel Dumontier, Andre Dekker.

Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Cham : Springer International Publishing : Imprint: Springer, 2019Видання: 1st ed. 2019Опис: VIII, 219 p. 45 illus., 35 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319997131
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 610.285 23
Класифікація Бібліотеки Конгресу:
  • R858-859.7
Електронне місцезнаходження та доступ:
Вміст:
Data sources -- Data at scale -- Standards in healthcare data -- Using FAIR data / data stewardship -- Privacy / deidentification -- Preparing your data -- Creating a predictive model -- Diving deeper into models -- Validation and Evaluation of reported models -- Clinical decision support systems -- Mobile app development -- Operational excellence -- Value Based Healthcare (Regulatory concerns).
У: Springer Nature eBookЗведення: This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Data sources -- Data at scale -- Standards in healthcare data -- Using FAIR data / data stewardship -- Privacy / deidentification -- Preparing your data -- Creating a predictive model -- Diving deeper into models -- Validation and Evaluation of reported models -- Clinical decision support systems -- Mobile app development -- Operational excellence -- Value Based Healthcare (Regulatory concerns).

Open Access

This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.