Uncertainty in Engineering [electronic resource] : Introduction to Methods and Applications / edited by Louis J. M. Aslett, Frank P. A. Coolen, Jasper De Bock.

Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: SpringerBriefs in StatisticsПублікація: Cham : Springer International Publishing : Imprint: Springer, 2022Видання: 1st ed. 2022Опис: VII, 147 p. 55 illus., 41 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783030836405
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 519.5 23
Класифікація Бібліотеки Конгресу:
  • QA276-280
Електронне місцезнаходження та доступ:
Вміст:
Introduction to Bayesian statistical inference -- Sampling from complex probability distributions: a Monte Carlo primer for engineers -- Introduction to the theory of imprecise probability -- Imprecise discrete-time Markov chains -- Statistics with imprecise probabilities – a short survey -- Reliability -- Simulation methods for the analysis of complex systems -- Overview of stochastic model updating in aerospace application under uncertainty treatment -- Aerospace flight modeling and experimental testing.
У: Springer Nature eBookЗведення: This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Introduction to Bayesian statistical inference -- Sampling from complex probability distributions: a Monte Carlo primer for engineers -- Introduction to the theory of imprecise probability -- Imprecise discrete-time Markov chains -- Statistics with imprecise probabilities – a short survey -- Reliability -- Simulation methods for the analysis of complex systems -- Overview of stochastic model updating in aerospace application under uncertainty treatment -- Aerospace flight modeling and experimental testing.

Open Access

This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.