Multivariate Statistical Analysis in the Real and Complex Domains [electronic resource] / by Arak M. Mathai, Serge B. Provost, Hans J. Haubold.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Cham : Springer International Publishing : Imprint: Springer, 2022Видання: 1st ed. 2022Опис: XXVII, 921 p. 3 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783030958640
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 519.5 23
Класифікація Бібліотеки Конгресу:
  • QA276-280
Електронне місцезнаходження та доступ:
Вміст:
1. Mathematical Preliminaries -- 2. The Univariate Gaussian and Related Distribution -- 3. Multivariate Gaussian and Related Distributions -- 4. The Matrix-variate Gaussian Distribution -- 5. Matrix-variate Gamma and Beta Distributions -- 6. Hypothesis Testing and Null Distributions -- 7. Rectangular Matrix-variate Distributions -- 8. Distributions of Eigenvalues and Eigenvectors -- 9. Principal Component Analysis -- 10. Canonical Correlation Analysis -- 11. Factor Analysis -- 12. Classification Problems -- 13. Multivariate Analysis of Variance (MANOVA) -- 14. Profile Analysis and Growth Curves -- 15. Cluster Analysis and Correspondence Analysis.
У: Springer Nature eBookЗведення: This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lecture style so that the learning process feels organic. It also contains original results, with the goal of driving research conversations forward. This will be particularly useful for researchers working in machine learning, biomedical signal processing, and other fields that increasingly rely on complex random variables to model complex-valued data. It can also be used in advanced courses on multivariate analysis. Numerous exercises are included throughout.
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

1. Mathematical Preliminaries -- 2. The Univariate Gaussian and Related Distribution -- 3. Multivariate Gaussian and Related Distributions -- 4. The Matrix-variate Gaussian Distribution -- 5. Matrix-variate Gamma and Beta Distributions -- 6. Hypothesis Testing and Null Distributions -- 7. Rectangular Matrix-variate Distributions -- 8. Distributions of Eigenvalues and Eigenvectors -- 9. Principal Component Analysis -- 10. Canonical Correlation Analysis -- 11. Factor Analysis -- 12. Classification Problems -- 13. Multivariate Analysis of Variance (MANOVA) -- 14. Profile Analysis and Growth Curves -- 15. Cluster Analysis and Correspondence Analysis.

Open Access

This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lecture style so that the learning process feels organic. It also contains original results, with the goal of driving research conversations forward. This will be particularly useful for researchers working in machine learning, biomedical signal processing, and other fields that increasingly rely on complex random variables to model complex-valued data. It can also be used in advanced courses on multivariate analysis. Numerous exercises are included throughout.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.