Agent AI for Finance [electronic resource] : From Financial Argument Mining to Agent-Based Modeling / by Chung-Chi Chen, Hiroya Takamura.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive RoboticsПублікація: Cham : Springer Nature Switzerland : Imprint: Springer, 2025Видання: 1st ed. 2025Опис: XII, 83 p. 9 illus., 8 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783031946875
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 006.3 23
Класифікація Бібліотеки Конгресу:
  • Q334-342
  • TA347.A78
Електронне місцезнаходження та доступ:
Вміст:
Preface -- 1. Introduction -- 2. Financial Argument Mining -- 3. Single-Agent/Model Design -- 4. Multi-Agent Interaction -- 5. Multi-Scale Model Synergy -- 6. Generative AI Application Scenarios -- 7. Looking to the Future.
У: Springer Nature eBookЗведення: This open access book provides an overview of the current state of financial argument mining and financial text generation, and presents the authors’ thoughts on the blueprint for NLP in finance in the agent AI era. Financial documents contain numerous causal inferences and subjective opinions. In a previous book, “From Opinion Mining to Financial Argument Mining” (Springer, 2021), the first author discussed understanding financial documents in a fine-grained manner, particularly those containing opinions. The book highlighted several future directions, such as financial argument mining, multimodal opinion understanding, and analysis generation, and anticipated a lengthy journey for these topics. However, since 2022, ChatGPT and large language models (LLMs) have shown promising advancements, motivating the authors to write this second book on the topic of financial Natural Language Processing (NLP). Agent-based AI systems have been widely discussed since the advent of LLMs. This book aims to equip researchers and practitioners with the latest methodologies, concepts, and frameworks for developing, deploying, and evaluating AI agents with capabilities in multimodal understanding, decision-making, and interaction. It places a special emphasis on human-centered decision-making and multi-agent cooperation in financial applications. The book surveys the current landscape and discuss future research and development directions. Targeting a wide audience, from students to seasoned researchers in AI and finance, this book offers an overview of recent trends in Agent AI for finance. It provides a foundation for students to understand the field and design their research direction, while inviting experienced researchers to engage in discussions on open research questions informed by pilot experimental results. Although this book focuses on financial applications, the discussed concepts and methods can also be applied to other real-world applications by integrating domain-specific characteristics. The authors look forward to seeing new findings and more novel extensions based on the proposed ideas.
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Preface -- 1. Introduction -- 2. Financial Argument Mining -- 3. Single-Agent/Model Design -- 4. Multi-Agent Interaction -- 5. Multi-Scale Model Synergy -- 6. Generative AI Application Scenarios -- 7. Looking to the Future.

Open Access

This open access book provides an overview of the current state of financial argument mining and financial text generation, and presents the authors’ thoughts on the blueprint for NLP in finance in the agent AI era. Financial documents contain numerous causal inferences and subjective opinions. In a previous book, “From Opinion Mining to Financial Argument Mining” (Springer, 2021), the first author discussed understanding financial documents in a fine-grained manner, particularly those containing opinions. The book highlighted several future directions, such as financial argument mining, multimodal opinion understanding, and analysis generation, and anticipated a lengthy journey for these topics. However, since 2022, ChatGPT and large language models (LLMs) have shown promising advancements, motivating the authors to write this second book on the topic of financial Natural Language Processing (NLP). Agent-based AI systems have been widely discussed since the advent of LLMs. This book aims to equip researchers and practitioners with the latest methodologies, concepts, and frameworks for developing, deploying, and evaluating AI agents with capabilities in multimodal understanding, decision-making, and interaction. It places a special emphasis on human-centered decision-making and multi-agent cooperation in financial applications. The book surveys the current landscape and discuss future research and development directions. Targeting a wide audience, from students to seasoned researchers in AI and finance, this book offers an overview of recent trends in Agent AI for finance. It provides a foundation for students to understand the field and design their research direction, while inviting experienced researchers to engage in discussions on open research questions informed by pilot experimental results. Although this book focuses on financial applications, the discussed concepts and methods can also be applied to other real-world applications by integrating domain-specific characteristics. The authors look forward to seeing new findings and more novel extensions based on the proposed ideas.

Accessibility summary: This PDF has been created in accordance with the PDF/UA-1 standard to enhance accessibility, including screen reader support, described non-text content (images, graphs), bookmarks for easy navigation, keyboard-friendly links and forms and searchable, selectable text. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com. Please note that a more accessible version of this eBook is available as ePub.

No reading system accessibility options actively disabled

Publisher contact for further accessibility information: accessibilitysupport@springernature.com

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.