Algorithms for Sparse Linear Systems [electronic resource] / by Jennifer Scott, Miroslav Tůma.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Nečas Center SeriesПублікація: Cham : Springer International Publishing : Imprint: Birkhäuser, 2023Видання: 1st ed. 2023Опис: XIX, 242 p. 70 illus., 27 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783031258206
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 518 23
Класифікація Бібліотеки Конгресу:
  • QA297-299.4
Електронне місцезнаходження та доступ:
Вміст:
An introduction to sparse matrices -- Sparse matrices and their graphs -- Introduction to matrix factorizations -- Sparse Cholesky sovler: The symbolic phase -- Sparse Cholesky solver: The factorization phase -- Sparse LU factorizations -- Stability, ill-conditioning and symmetric indefinite factorizations -- Sparse matrix ordering algorithms -- Algebraic preconditioning and approximate factorizations -- Incomplete factorizations -- Sparse approximate inverse preconditioners.
У: Springer Nature eBookЗведення: Large sparse linear systems of equations are ubiquitous in science, engineering and beyond. This open access monograph focuses on factorization algorithms for solving such systems. It presents classical techniques for complete factorizations that are used in sparse direct methods and discusses the computation of approximate direct and inverse factorizations that are key to constructing general-purpose algebraic preconditioners for iterative solvers. A unified framework is used that emphasizes the underlying sparsity structures and highlights the importance of understanding sparse direct methods when developing algebraic preconditioners. Theoretical results are complemented by sparse matrix algorithm outlines. This monograph is aimed at students of applied mathematics and scientific computing, as well as computational scientists and software developers who are interested in understanding the theory and algorithms needed to tackle sparsesystems. It is assumed that the reader has completed a basic course in linear algebra and numerical mathematics. .
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

An introduction to sparse matrices -- Sparse matrices and their graphs -- Introduction to matrix factorizations -- Sparse Cholesky sovler: The symbolic phase -- Sparse Cholesky solver: The factorization phase -- Sparse LU factorizations -- Stability, ill-conditioning and symmetric indefinite factorizations -- Sparse matrix ordering algorithms -- Algebraic preconditioning and approximate factorizations -- Incomplete factorizations -- Sparse approximate inverse preconditioners.

Open Access

Large sparse linear systems of equations are ubiquitous in science, engineering and beyond. This open access monograph focuses on factorization algorithms for solving such systems. It presents classical techniques for complete factorizations that are used in sparse direct methods and discusses the computation of approximate direct and inverse factorizations that are key to constructing general-purpose algebraic preconditioners for iterative solvers. A unified framework is used that emphasizes the underlying sparsity structures and highlights the importance of understanding sparse direct methods when developing algebraic preconditioners. Theoretical results are complemented by sparse matrix algorithm outlines. This monograph is aimed at students of applied mathematics and scientific computing, as well as computational scientists and software developers who are interested in understanding the theory and algorithms needed to tackle sparsesystems. It is assumed that the reader has completed a basic course in linear algebra and numerical mathematics. .

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.