Multiple-Aspect Analysis of Semantic Trajectories [electronic resource] : First International Workshop, MASTER 2019, Held in Conjunction with ECML-PKDD 2019, Würzburg, Germany, September 16, 2019, Proceedings / edited by Konstantinos Tserpes, Chiara Renso, Stan Matwin.

Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Lecture Notes in Artificial Intelligence ; 11889Публікація: Cham : Springer International Publishing : Imprint: Springer, 2020Видання: 1st ed. 2020Опис: IX, 133 p. 93 illus., 47 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783030380816
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 006.31 23
Класифікація Бібліотеки Конгресу:
  • Q325.5-.7
Електронне місцезнаходження та доступ:
Вміст:
Learning from our Movements - The Mobility Data Analytics Era -- Uncovering hidden concepts from AIS data: A network abstraction of maritime traffic for anomaly detection -- Nowcasting Unemployment Rates with Smartphone GPS data -- Online long-term trajectory prediction based on mined route patterns -- EvolvingClusters: Online Discovery of Group Patterns in Enriched Maritime Data -- Prospective Data Model and Distributed Query Processing for Mobile Sensing Data Streams -- Predicting Fishing Effort and Catch Using Semantic Trajectories and Machine Learning -- A Neighborhood-augmented LSTM Model for Taxi-Passenger Demand Prediction -- Multi-Channel Convolutional Neural Networks for Handling Multi-Dimensional Semantic Trajectories and Predicting Future Semantic Locations.
У: Springer Nature eBookЗведення: This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, in Würzburg, Germany, in September 2019. The 8 full papers presented were carefully reviewed and selected from 12 submissions. They represent an interesting mix of techniques to solve recurrent as well as new problems in the semantic trajectory domain, such as data representation models, data management systems, machine learning approaches for anomaly detection, and common pathways identification.
Тип одиниці: Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (till 2020 - Open Access)
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Learning from our Movements - The Mobility Data Analytics Era -- Uncovering hidden concepts from AIS data: A network abstraction of maritime traffic for anomaly detection -- Nowcasting Unemployment Rates with Smartphone GPS data -- Online long-term trajectory prediction based on mined route patterns -- EvolvingClusters: Online Discovery of Group Patterns in Enriched Maritime Data -- Prospective Data Model and Distributed Query Processing for Mobile Sensing Data Streams -- Predicting Fishing Effort and Catch Using Semantic Trajectories and Machine Learning -- A Neighborhood-augmented LSTM Model for Taxi-Passenger Demand Prediction -- Multi-Channel Convolutional Neural Networks for Handling Multi-Dimensional Semantic Trajectories and Predicting Future Semantic Locations.

Open Access

This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, in Würzburg, Germany, in September 2019. The 8 full papers presented were carefully reviewed and selected from 12 submissions. They represent an interesting mix of techniques to solve recurrent as well as new problems in the semantic trajectory domain, such as data representation models, data management systems, machine learning approaches for anomaly detection, and common pathways identification.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.