Methoden des bestärkenden Lernens für die Produktionsablaufplanung [electronic resource] / von Sebastian Lang.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2023Видання: 1st ed. 2023Опис: XXXIII, 286 S. 62 Abb., 42 Abb. in Farbe. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783658417512
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 006.31 23
Класифікація Бібліотеки Конгресу:
  • Q325.5-.7
Електронне місцезнаходження та доступ: У: Springer Nature eBookЗведення: In diesem Open-Access-Buch wird eine Methode zur Adaption, Integration und Anwendung von bestärkenden Lernverfahren (Reinforcement Learning) für die Produktionsablaufplanung beschrieben. Die Methode wird anhand von typischen Problemstellungen der Produktionsablaufplanung hergeleitet und evaluiert. Die Produktionsablaufplanung ist eine Kernaufgabe der Produktion und Logistik, bei welcher Aufträge auf Ressourcen so verteilt und in Reihenfolge gebracht werden müssen, dass geforderte Nebenbedingungen der Planung erfüllt werden. Entsprechende Optimierungsprobleme sind meist NP-schwer, wodurch eine optimale Lösung gewöhnlich nicht unter wirtschaftlichen Bedingungen erzielbar ist. In der Industrie werden stattdessen Prioritätsregeln, Heuristiken oder Metaheuristiken verwendet, die entweder zeiteffizient zu Lasten der Lösungsgüte rechnen oder qualitativ hochwertige Lösungen unter hohem Rechenaufwand erzeugen. Das bestärkende Lernen ist eine Unterart des maschinellen Lernens und eine weitereKlasse potenzieller Lösungsstrategien. Probleme der Produktionsablaufplanung sind insoweit vergleichbar, als dass sie sich ebenfalls als stufenartige Entscheidungsketten modellieren lassen. Trotz ihrer Vorteile existiert bisher kaum allgemeines Wissen hinsichtlich der Anwendung des bestärkenden Lernens für die Produktionsablaufplanung. Der Autor Sebastian Lang ist als wissenschaftlicher Mitarbeiter am Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF in Magdeburg tätig. .
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Open Access

In diesem Open-Access-Buch wird eine Methode zur Adaption, Integration und Anwendung von bestärkenden Lernverfahren (Reinforcement Learning) für die Produktionsablaufplanung beschrieben. Die Methode wird anhand von typischen Problemstellungen der Produktionsablaufplanung hergeleitet und evaluiert. Die Produktionsablaufplanung ist eine Kernaufgabe der Produktion und Logistik, bei welcher Aufträge auf Ressourcen so verteilt und in Reihenfolge gebracht werden müssen, dass geforderte Nebenbedingungen der Planung erfüllt werden. Entsprechende Optimierungsprobleme sind meist NP-schwer, wodurch eine optimale Lösung gewöhnlich nicht unter wirtschaftlichen Bedingungen erzielbar ist. In der Industrie werden stattdessen Prioritätsregeln, Heuristiken oder Metaheuristiken verwendet, die entweder zeiteffizient zu Lasten der Lösungsgüte rechnen oder qualitativ hochwertige Lösungen unter hohem Rechenaufwand erzeugen. Das bestärkende Lernen ist eine Unterart des maschinellen Lernens und eine weitereKlasse potenzieller Lösungsstrategien. Probleme der Produktionsablaufplanung sind insoweit vergleichbar, als dass sie sich ebenfalls als stufenartige Entscheidungsketten modellieren lassen. Trotz ihrer Vorteile existiert bisher kaum allgemeines Wissen hinsichtlich der Anwendung des bestärkenden Lernens für die Produktionsablaufplanung. Der Autor Sebastian Lang ist als wissenschaftlicher Mitarbeiter am Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF in Magdeburg tätig. .

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.