Big and Complex Data Analysis [electronic resource] : Methodologies and Applications / edited by S. Ejaz Ahmed.

Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Contributions to StatisticsПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XIV, 386 p. 85 illus., 55 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319415734
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 519.5 23
Класифікація Бібліотеки Конгресу:
  • QA276-280
Електронне місцезнаходження та доступ:
Вміст:
Preface -- Introduction -- Unsupervised Bump Hunting Using Principal Components -- Statistical Process Control Charts as a Tool for Analyzing Big Data -- Empirical Likelihood Test for High Dimensional Generalized Linear Models -- Identifying gene-environment interactions associated with prognosis using penalized quantile regression -- A Computationally Efficient Approach for Modeling Complex and Big Survival Data -- Regularization after marginal learning for ultra-high dimensional regression models -- Tests of concentration for low-dimensional and high-dimensional directional data -- Random Projections For Large-Scale Regression -- How Different are Estimated Genetic Networks of Cancer Subtypes? -- Analysis of correlated data with error-prone response under generalized linear mixed models -- High-Dimensional Classification for Brain Decoding -- Optimal shrinkage estimation in heteroscedastic hierarchical linear models -- Bias-reduced moment estimators of Population Spectral Distribution and their applications -- Testing in the Presence of Nuisance Parameters: Some Comments on Tests Post-Model-Selection and Random Critical Values -- A Mixture of Variance-Gamma Factor Analyzers -- Fast Community Detection in Complex Networks with a K-Depths Classifier.
У: Springer eBooksЗведення: This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Preface -- Introduction -- Unsupervised Bump Hunting Using Principal Components -- Statistical Process Control Charts as a Tool for Analyzing Big Data -- Empirical Likelihood Test for High Dimensional Generalized Linear Models -- Identifying gene-environment interactions associated with prognosis using penalized quantile regression -- A Computationally Efficient Approach for Modeling Complex and Big Survival Data -- Regularization after marginal learning for ultra-high dimensional regression models -- Tests of concentration for low-dimensional and high-dimensional directional data -- Random Projections For Large-Scale Regression -- How Different are Estimated Genetic Networks of Cancer Subtypes? -- Analysis of correlated data with error-prone response under generalized linear mixed models -- High-Dimensional Classification for Brain Decoding -- Optimal shrinkage estimation in heteroscedastic hierarchical linear models -- Bias-reduced moment estimators of Population Spectral Distribution and their applications -- Testing in the Presence of Nuisance Parameters: Some Comments on Tests Post-Model-Selection and Random Critical Values -- A Mixture of Variance-Gamma Factor Analyzers -- Fast Community Detection in Complex Networks with a K-Depths Classifier.

This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.