Leavitt Path Algebras [electronic resource] / by Gene Abrams, Pere Ara, Mercedes Siles Molina.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Lecture Notes in Mathematics ; 2191Публікація: London : Springer London : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XIII, 289 p. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9781447173441
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 512.46 23
Класифікація Бібліотеки Конгресу:
  • QA251.5
Електронне місцезнаходження та доступ:
Вміст:
1 The basics of Leavitt path algebras: motivations, definitions and examples -- 2 Two-sided ideals -- 3 Idempotents, and finitely generated projective modules -- 4 General ring-theoretic results -- 5 Graph C*-algebras, and their relationship to Leavitt path algebras -- 6 K-theory -- 7 Generalizations, applications, and current lines of research -- References -- Index.
У: Springer eBooksЗведення: This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and symbolic dynamics. With its descriptive writing style, this book is highly accessible.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

1 The basics of Leavitt path algebras: motivations, definitions and examples -- 2 Two-sided ideals -- 3 Idempotents, and finitely generated projective modules -- 4 General ring-theoretic results -- 5 Graph C*-algebras, and their relationship to Leavitt path algebras -- 6 K-theory -- 7 Generalizations, applications, and current lines of research -- References -- Index.

This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and symbolic dynamics. With its descriptive writing style, this book is highly accessible.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.