Classical Statistical Mechanics with Nested Sampling [electronic resource] / by Robert John Nicholas Baldock.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Springer Theses, Recognizing Outstanding Ph.D. ResearchПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XII, 144 p. 30 illus., 25 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319667690
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 621 23
Класифікація Бібліотеки Конгресу:
  • QC174.7-175.36
Електронне місцезнаходження та доступ:
Вміст:
Introduction -- A Primer in Probability -- Phase Space Probability Distributions for Various External Conditions -- Relating Probability Density Functions to the Behaviour of Systems -- The Strategy of Nested Sampling -- Nested Sampling for Materials -- Equations of State -- Parallelising Nested Sampling -- Hamiltonian Monte Carlo for the Canonical Distribution -- Hamiltonian Monte Carlo for Nested Sampling -- Conclusion of Thesis and Further Work.
У: Springer eBooksЗведення: This thesis develops a nested sampling algorithm into a black box tool for directly calculating the partition function, and thus the complete phase diagram of a material, from the interatomic potential energy function. It represents a significant step forward in our ability to accurately describe the finite temperature properties of materials. In principle, the macroscopic phases of matter are related to the microscopic interactions of atoms by statistical mechanics and the partition function. In practice, direct calculation of the partition function has proved infeasible for realistic models of atomic interactions, even with modern atomistic simulation methods. The thesis also shows how the output of nested sampling calculations can be processed to calculate the complete PVT (pressure–volume–temperature) equation of state for a material, and applies the nested sampling algorithm to calculate the pressure–temperature phase diagrams of aluminium and a model binary alloy.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Introduction -- A Primer in Probability -- Phase Space Probability Distributions for Various External Conditions -- Relating Probability Density Functions to the Behaviour of Systems -- The Strategy of Nested Sampling -- Nested Sampling for Materials -- Equations of State -- Parallelising Nested Sampling -- Hamiltonian Monte Carlo for the Canonical Distribution -- Hamiltonian Monte Carlo for Nested Sampling -- Conclusion of Thesis and Further Work.

This thesis develops a nested sampling algorithm into a black box tool for directly calculating the partition function, and thus the complete phase diagram of a material, from the interatomic potential energy function. It represents a significant step forward in our ability to accurately describe the finite temperature properties of materials. In principle, the macroscopic phases of matter are related to the microscopic interactions of atoms by statistical mechanics and the partition function. In practice, direct calculation of the partition function has proved infeasible for realistic models of atomic interactions, even with modern atomistic simulation methods. The thesis also shows how the output of nested sampling calculations can be processed to calculate the complete PVT (pressure–volume–temperature) equation of state for a material, and applies the nested sampling algorithm to calculate the pressure–temperature phase diagrams of aluminium and a model binary alloy.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.