Efficient Biometric Indexing and Retrieval Techniques for Large-Scale Systems [electronic resource] / by Ilaiah Kavati, Munaga V.N.K. Prasad, Chakravarthy Bhagvati.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: SpringerBriefs in Computer ScienceПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XVII, 67 p. 29 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319576602
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 570.15195 23
Класифікація Бібліотеки Конгресу:
  • QH323.5
Електронне місцезнаходження та доступ:
Вміст:
Introduction -- Hierarchical Decomposition of Extended Triangulation for Fingerprint Indexing -- An Efficient Score-Based Indexing Technique for Fast Palmprint Retrieval -- A New Cluster-Based Indexing Technique for Palmprint Databases Using Scores and Decision-Level Fusion -- Conclusions and Future Scope.
У: Springer eBooksЗведення: This work presents a review of different indexing techniques designed to enhance the speed and efficiency of searches over large biometric databases. The coverage includes an extended Delaunay triangulation-based approach for fingerprint biometrics, involving a classification based on the type of minutiae at the vertices of each triangle. This classification is demonstrated to provide improved partitioning of the database, leading to a significant decrease in the number of potential matches during identification. This discussion is then followed by a description of a second indexing technique, which sorts biometric images based on match scores calculated against a set of pre-selected sample images, resulting in a rapid search regardless of the size of the database. The text also examines a novel clustering-based approach to indexing with decision-level fusion, using an adaptive clustering algorithm to compute a set of clusters represented by a ‘leader’ image, and then determining the index code from the set of leaders. This is shown to improve identification performance while using minimal resources.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Introduction -- Hierarchical Decomposition of Extended Triangulation for Fingerprint Indexing -- An Efficient Score-Based Indexing Technique for Fast Palmprint Retrieval -- A New Cluster-Based Indexing Technique for Palmprint Databases Using Scores and Decision-Level Fusion -- Conclusions and Future Scope.

This work presents a review of different indexing techniques designed to enhance the speed and efficiency of searches over large biometric databases. The coverage includes an extended Delaunay triangulation-based approach for fingerprint biometrics, involving a classification based on the type of minutiae at the vertices of each triangle. This classification is demonstrated to provide improved partitioning of the database, leading to a significant decrease in the number of potential matches during identification. This discussion is then followed by a description of a second indexing technique, which sorts biometric images based on match scores calculated against a set of pre-selected sample images, resulting in a rapid search regardless of the size of the database. The text also examines a novel clustering-based approach to indexing with decision-level fusion, using an adaptive clustering algorithm to compute a set of clusters represented by a ‘leader’ image, and then determining the index code from the set of leaders. This is shown to improve identification performance while using minimal resources.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.