On Characters of Finite Groups [electronic resource] / by Michel Broué.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Mathematical Lectures from Peking UniversityПублікація: Singapore : Springer Singapore : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XVI, 246 p. 9 illus., 5 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9789811068782
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 512.2 23
Класифікація Бібліотеки Конгресу:
  • QA174-183
Електронне місцезнаходження та доступ:
Вміст:
Tensor Product.-On Representation.-Characteristic 0 representations.-Playing with the base field -- Induction, restriction -- Brauer's theorem and some applications -- Graded representations and characters -- Drinfeld Double -- Appendix A. Basics on Finite Groups -- Appendix B. Assumed results on Galois theory -- Appendix C. Integral elements -- Appendix D. Noetherian rings and modules -- Appendix E. The language of categories and functors -- Bibliography 211.-Index.
У: Springer eBooksЗведення: This book explores the classical and beautiful character theory of finite groups. It does it by using some rudiments of the language of categories. Originally emerging from two courses offered at Peking University (PKU), primarily for third-year students, it is now better suited for graduate courses, and provides broader coverage than books that focus almost exclusively on groups. The book presents the basic tools, notions and theorems of character theory (including a new treatment of the control of fusion and isometries), and introduces readers to the categorical language at several levels. It includes and proves the major results on characteristic zero representations without any assumptions about the base field. The book includes a dedicated chapter on graded representations and applications of polynomial invariants of finite groups, and its closing chapter addresses the more recent notion of the Drinfeld double of a finite group and the corresponding representation of GL_2(Z).
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Tensor Product.-On Representation.-Characteristic 0 representations.-Playing with the base field -- Induction, restriction -- Brauer's theorem and some applications -- Graded representations and characters -- Drinfeld Double -- Appendix A. Basics on Finite Groups -- Appendix B. Assumed results on Galois theory -- Appendix C. Integral elements -- Appendix D. Noetherian rings and modules -- Appendix E. The language of categories and functors -- Bibliography 211.-Index.

This book explores the classical and beautiful character theory of finite groups. It does it by using some rudiments of the language of categories. Originally emerging from two courses offered at Peking University (PKU), primarily for third-year students, it is now better suited for graduate courses, and provides broader coverage than books that focus almost exclusively on groups. The book presents the basic tools, notions and theorems of character theory (including a new treatment of the control of fusion and isometries), and introduces readers to the categorical language at several levels. It includes and proves the major results on characteristic zero representations without any assumptions about the base field. The book includes a dedicated chapter on graded representations and applications of polynomial invariants of finite groups, and its closing chapter addresses the more recent notion of the Drinfeld double of a finite group and the corresponding representation of GL_2(Z).

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.