Health Informatics Data Analysis [electronic resource] : Methods and Examples / edited by Dong Xu, May D. Wang, Fengfeng Zhou, Yunpeng Cai.

Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Health Information ScienceПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: X, 210 p. 54 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319449814
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 502.85 23
Класифікація Бібліотеки Конгресу:
  • R858-R859.7
Електронне місцезнаходження та доступ:
Вміст:
1 Electrocardiogram -- 2 EEG visualization and analysis techniques -- 3 Big health data mining -- 4 Computational infrastructure for tele-health -- 5 Identification and Functional Annotation of lncRNAs in human disease -- 6 Metabolomics characterization of human diseases -- 7 Metagenomics for Monitoring Environmental Biodiversity: Challenges, Progress, and Opportunities -- 8 Global nonlinearfitness function for protein structures -- 9 Clinical Assessment of Disease Risk Factors Using SNP Data and Bayesian Methods -- 10 Imaging genetics: information fusion and association techniques between biomedical images and genetic factors.
У: Springer eBooksЗведення: This book provides a comprehensive overview of different biomedical data types, including both clinical and genomic data. Thorough explanations enable readers to explore key topics ranging from electrocardiograms to Big Data health mining and EEG analysis techniques. Each chapter offers a summary of the field and a sample analysis. Also covered are telehealth infrastructure, healthcare information association rules, methods for mass spectrometry imaging, environmental biodiversity, and the global nonlinear fitness function for protein structures. Diseases are addressed in chapters on functional annotation of lncRNAs in human disease, metabolomics characterization of human diseases, disease risk factors using SNP data and Bayesian methods, and imaging informatics for diagnostic imaging marker selection. With the exploding accumulation of Electronic Health Records (EHRs), there is an urgent need for computer-aided analysis of heterogeneous biomedical datasets. Biomedical data is notorious for its diversified scales, dimensions, and volumes, and requires interdisciplinary technologies for visual illustration and digital characterization. Various computer programs and servers have been developed for these purposes by both theoreticians and engineers. This book is an essential reference for investigating the tools available for analyzing heterogeneous biomedical data. It is designed for professionals, researchers, and practitioners in biomedical engineering, diagnostics, medical electronics, and related industries.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

1 Electrocardiogram -- 2 EEG visualization and analysis techniques -- 3 Big health data mining -- 4 Computational infrastructure for tele-health -- 5 Identification and Functional Annotation of lncRNAs in human disease -- 6 Metabolomics characterization of human diseases -- 7 Metagenomics for Monitoring Environmental Biodiversity: Challenges, Progress, and Opportunities -- 8 Global nonlinearfitness function for protein structures -- 9 Clinical Assessment of Disease Risk Factors Using SNP Data and Bayesian Methods -- 10 Imaging genetics: information fusion and association techniques between biomedical images and genetic factors.

This book provides a comprehensive overview of different biomedical data types, including both clinical and genomic data. Thorough explanations enable readers to explore key topics ranging from electrocardiograms to Big Data health mining and EEG analysis techniques. Each chapter offers a summary of the field and a sample analysis. Also covered are telehealth infrastructure, healthcare information association rules, methods for mass spectrometry imaging, environmental biodiversity, and the global nonlinear fitness function for protein structures. Diseases are addressed in chapters on functional annotation of lncRNAs in human disease, metabolomics characterization of human diseases, disease risk factors using SNP data and Bayesian methods, and imaging informatics for diagnostic imaging marker selection. With the exploding accumulation of Electronic Health Records (EHRs), there is an urgent need for computer-aided analysis of heterogeneous biomedical datasets. Biomedical data is notorious for its diversified scales, dimensions, and volumes, and requires interdisciplinary technologies for visual illustration and digital characterization. Various computer programs and servers have been developed for these purposes by both theoreticians and engineers. This book is an essential reference for investigating the tools available for analyzing heterogeneous biomedical data. It is designed for professionals, researchers, and practitioners in biomedical engineering, diagnostics, medical electronics, and related industries.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.