hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes [electronic resource] / by Andrea Cangiani, Zhaonan Dong, Emmanuil H. Georgoulis, Paul Houston.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: SpringerBriefs in MathematicsПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: VIII, 131 p. 32 illus., 1 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319676739
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 518 23
Класифікація Бібліотеки Конгресу:
  • QA71-90
Електронне місцезнаходження та доступ:
Вміст:
1 Introduction -- 2 Introduction to Discontinuous Galerkin Methods -- 3 hp–Inverse and Approximation Estimates -- 4 DGFEMs for Pure Diffusion Problems -- 5 DGFEMs for second–order PDEs of mixed–type -- 6 Implementation Aspects -- 7 Adaptive Mesh Refinement -- 8 Summary and Outlook -- References.
У: Springer eBooksЗведення: Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and element-orders is shown to deliver substantial computational gains in several practical scenarios. .
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

1 Introduction -- 2 Introduction to Discontinuous Galerkin Methods -- 3 hp–Inverse and Approximation Estimates -- 4 DGFEMs for Pure Diffusion Problems -- 5 DGFEMs for second–order PDEs of mixed–type -- 6 Implementation Aspects -- 7 Adaptive Mesh Refinement -- 8 Summary and Outlook -- References.

Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and element-orders is shown to deliver substantial computational gains in several practical scenarios. .

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.