Large Deviations for Random Graphs [electronic resource] : École d'Été de Probabilités de Saint-Flour XLV - 2015 / by Sourav Chatterjee.
Вид матеріалу:
Текст Серія: École d'Été de Probabilités de Saint-Flour ; 2197Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XI, 170 p. online resourceТип вмісту: - text
- computer
- online resource
- 9783319658162
- 519.2 23
- QA273.A1-274.9
- QA274-274.9
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
1. Introduction -- 2. Preparation -- 3. Basics of graph limit theory -- 4. Large deviation preliminaries -- 5. Large deviations for dense random graphs -- 6. Applications of dense graph large deviations -- 7. Exponential random graph models -- 8. Large deviations for sparse graphs -- Index.
This book addresses the emerging body of literature on the study of rare events in random graphs and networks. For example, what does a random graph look like if by chance it has far more triangles than expected? Until recently, probability theory offered no tools to help answer such questions. Important advances have been made in the last few years, employing tools from the newly developed theory of graph limits. This work represents the first book-length treatment of this area, while also exploring the related area of exponential random graphs. All required results from analysis, combinatorics, graph theory and classical large deviations theory are developed from scratch, making the text self-contained and doing away with the need to look up external references. Further, the book is written in a format and style that are accessible for beginning graduate students in mathematics and statistics.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.