Hyperplane Arrangements [electronic resource] : An Introduction / by Alexandru Dimca.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: UniversitextПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XII, 200 p. 18 illus., 17 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319562216
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 516.35 23
Класифікація Бібліотеки Конгресу:
  • QA564-609
Електронне місцезнаходження та доступ:
Вміст:
Invitation to the Trip -- Hyperplane Arrangements and their Combinatorics -- Orlik–Solomon Algebras and de Rham Cohomology -- On the Topology of the Complement M(A) -- Milnor Fibers and Local Systems -- Characteristic Varieties and Resonance Varieties -- Logarithmic Connections and Mixed Hodge Structures -- Free Arrangements and de Rham Cohomology of Milnor Fibers.
У: Springer eBooksЗведення: This textbook provides an accessible introduction to the rich and beautiful area of hyperplane arrangement theory, where discrete mathematics, in the form of combinatorics and arithmetic, meets continuous mathematics, in the form of the topology and Hodge theory of complex algebraic varieties. The topics discussed in this book range from elementary combinatorics and discrete geometry to more advanced material on mixed Hodge structures, logarithmic connections and Milnor fibrations. The author covers a lot of ground in a relatively short amount of space, with a focus on defining concepts carefully and giving proofs of theorems in detail where needed. Including a number of surprising results and tantalizing open problems, this timely book also serves to acquaint the reader with the rapidly expanding literature on the subject. Hyperplane Arrangements will be particularly useful to graduate students and researchers who are interested in algebraic geometry or algebraic topology. The book contains numerous exercises at the end of each chapter, making it suitable for courses as well as self-study.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Invitation to the Trip -- Hyperplane Arrangements and their Combinatorics -- Orlik–Solomon Algebras and de Rham Cohomology -- On the Topology of the Complement M(A) -- Milnor Fibers and Local Systems -- Characteristic Varieties and Resonance Varieties -- Logarithmic Connections and Mixed Hodge Structures -- Free Arrangements and de Rham Cohomology of Milnor Fibers.

This textbook provides an accessible introduction to the rich and beautiful area of hyperplane arrangement theory, where discrete mathematics, in the form of combinatorics and arithmetic, meets continuous mathematics, in the form of the topology and Hodge theory of complex algebraic varieties. The topics discussed in this book range from elementary combinatorics and discrete geometry to more advanced material on mixed Hodge structures, logarithmic connections and Milnor fibrations. The author covers a lot of ground in a relatively short amount of space, with a focus on defining concepts carefully and giving proofs of theorems in detail where needed. Including a number of surprising results and tantalizing open problems, this timely book also serves to acquaint the reader with the rapidly expanding literature on the subject. Hyperplane Arrangements will be particularly useful to graduate students and researchers who are interested in algebraic geometry or algebraic topology. The book contains numerous exercises at the end of each chapter, making it suitable for courses as well as self-study.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.