DataFlow Supercomputing Essentials [electronic resource] : Algorithms, Applications and Implementations / by Veljko Milutinovic, Milos Kotlar, Marko Stojanovic, Igor Dundic, Nemanja Trifunovic, Zoran Babovic.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Computer Communications and NetworksПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XI, 150 p. 52 illus., 50 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319661254
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 005.43 23
Класифікація Бібліотеки Конгресу:
  • QA76.76.O63
Електронне місцезнаходження та доступ:
Вміст:
Part I: Algorithms -- Implementing Neural Networks by Using the DataFlow Paradigm -- Part II: Applications -- Solving the Poisson Equation by Using Dataflow Technology -- Binary Search in the DataFlow Paradigm -- Part III: Implementations -- Introductory Overview on Implementation Tools -- DataFlow Systems: From Their Origins to Future Applications in Data Analytics, Deep Learning, and the Internet of Things.
У: Springer eBooksЗведення: This illuminating text/reference reviews the fundamentals of programming for effective DataFlow computing. The DataFlow paradigm enables considerable increases in speed and reductions in power consumption for supercomputing processes, yet the programming model requires a distinctly different approach. The algorithms and examples showcased in this book will help the reader to develop their understanding of the advantages and unique features of this methodology. This work serves as a companion title to DataFlow Supercomputing Essentials: Research, Development and Education, which analyzes the latest research in this area, and the training resources available. Topics and features: Presents an implementation of Neural Networks using the DataFlow paradigm, as an alternative to the traditional ControlFlow approach Discusses a solution to the three-dimensional Poisson equation, using the Fourier method and DataFlow technology Examines how the performance of the Binary Search algorithm can be improved through implementation on a DataFlow architecture Reviews the different way of thinking required to best configure the DataFlow engines for the processing of data in space flowing through the devices Highlights how the DataFlow approach can efficiently support applications in big data analytics, deep learning, and the Internet of Things This indispensable volume will benefit all researchers interested in supercomputing in general, and DataFlow computing in particular. Advanced undergraduate and graduate students involved in courses on Data Mining, Microprocessor Systems, and VLSI Systems, will also find the book to be an invaluable resource.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Part I: Algorithms -- Implementing Neural Networks by Using the DataFlow Paradigm -- Part II: Applications -- Solving the Poisson Equation by Using Dataflow Technology -- Binary Search in the DataFlow Paradigm -- Part III: Implementations -- Introductory Overview on Implementation Tools -- DataFlow Systems: From Their Origins to Future Applications in Data Analytics, Deep Learning, and the Internet of Things.

This illuminating text/reference reviews the fundamentals of programming for effective DataFlow computing. The DataFlow paradigm enables considerable increases in speed and reductions in power consumption for supercomputing processes, yet the programming model requires a distinctly different approach. The algorithms and examples showcased in this book will help the reader to develop their understanding of the advantages and unique features of this methodology. This work serves as a companion title to DataFlow Supercomputing Essentials: Research, Development and Education, which analyzes the latest research in this area, and the training resources available. Topics and features: Presents an implementation of Neural Networks using the DataFlow paradigm, as an alternative to the traditional ControlFlow approach Discusses a solution to the three-dimensional Poisson equation, using the Fourier method and DataFlow technology Examines how the performance of the Binary Search algorithm can be improved through implementation on a DataFlow architecture Reviews the different way of thinking required to best configure the DataFlow engines for the processing of data in space flowing through the devices Highlights how the DataFlow approach can efficiently support applications in big data analytics, deep learning, and the Internet of Things This indispensable volume will benefit all researchers interested in supercomputing in general, and DataFlow computing in particular. Advanced undergraduate and graduate students involved in courses on Data Mining, Microprocessor Systems, and VLSI Systems, will also find the book to be an invaluable resource.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.