Functional Analysis, Spectral Theory, and Applications [electronic resource] / by Manfred Einsiedler, Thomas Ward.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Graduate Texts in Mathematics ; 276Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XIV, 614 p. 33 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319585406
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 515.7 23
Класифікація Бібліотеки Конгресу:
  • QA319-329.9
Електронне місцезнаходження та доступ:
Вміст:
Motivation -- Norms and Banach Spaces -- Hilbert Spaces, Fourier Series, Unitary Representations -- Uniform Boundedness and Open Mapping Theorem -- Sobolev Spaces and Dirichlet’s Boundary Problem -- Compact Self-Adjoint Operators, Laplace Eigenfunctions -- Dual Spaces -- Locally Convex Vector Spaces -- Unitary Operators and Flows, Fourier Transform -- Locally Compact Groups, Amenability, Property (T) -- Banach Algebras and the Spectrum -- Spectral Theory and Functional Calculus -- Self-Adjoint and Symmetric Operators -- The Prime Number Theorem -- Appendix A: Set Theory and Topology -- Appendix B: Measure Theory -- Hints for Selected Problems -- Notes. .
У: Springer eBooksЗведення: This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Motivation -- Norms and Banach Spaces -- Hilbert Spaces, Fourier Series, Unitary Representations -- Uniform Boundedness and Open Mapping Theorem -- Sobolev Spaces and Dirichlet’s Boundary Problem -- Compact Self-Adjoint Operators, Laplace Eigenfunctions -- Dual Spaces -- Locally Convex Vector Spaces -- Unitary Operators and Flows, Fourier Transform -- Locally Compact Groups, Amenability, Property (T) -- Banach Algebras and the Spectrum -- Spectral Theory and Functional Calculus -- Self-Adjoint and Symmetric Operators -- The Prime Number Theorem -- Appendix A: Set Theory and Topology -- Appendix B: Measure Theory -- Hints for Selected Problems -- Notes. .

This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.