Towards Integrative Machine Learning and Knowledge Extraction [electronic resource] : BIRS Workshop, Banff, AB, Canada, July 24-26, 2015, Revised Selected Papers / edited by Andreas Holzinger, Randy Goebel, Massimo Ferri, Vasile Palade.

Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Lecture Notes in Artificial Intelligence ; 10344Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XVI, 207 p. 57 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319697758
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 006.3 23
Класифікація Бібліотеки Конгресу:
  • Q334-342
Електронне місцезнаходження та доступ:
Вміст:
Towards integrative Machine Learning & Knowledge Extraction -- Machine Learning and Knowledge Extraction in Digital Pathology needs an integrative approach -- Comparison of Public-Domain Software and Services for Probabilistic Record Linkage and Address Standardization -- Better Interpretable Models for Proteomics Data Analysis Using rule-based Mining -- Probabilistic Logic Programming in Action -- Persistent topology for natural data analysis — A survey -- Predictive Models for Differentiation between Normal and Abnormal EEG through Cross-Correlation and Machine Learning Techniques -- A Brief Philosophical Note on Information -- Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline -- A Fast Semi-Automatic Segmentation Tool for Processing Brain Tumor Images -- Topological characteristics of oil and gas reservoirs and their applications -- Convolutional and Recurrent Neural Networks for Activity Recognition in Smart Environment.
У: Springer eBooksЗведення: The BIRS Workshop “Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets” (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of “hot topics” toward tackling the grand challenge of reaching a level of useful and useable computational intelligence with a focus on real-world problems, such as in the health domain. This encompasses learning from prior data, extracting and discovering knowledge, generalizing the results, fighting the curse of dimensionality, and ultimately disentangling the underlying explanatory factors in complex data, i.e., to make sense of data within the context of the application domain.  The workshop aimed to contribute advancements in promising novel areas such as at the intersection of machine learning and topological data analysis. History has shown that most often the overlapping areas at intersections of seemingly disparate fields are key for the stimulation of new insights and further advances. This is particularly true for the extremely broad field of machine learning.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Towards integrative Machine Learning & Knowledge Extraction -- Machine Learning and Knowledge Extraction in Digital Pathology needs an integrative approach -- Comparison of Public-Domain Software and Services for Probabilistic Record Linkage and Address Standardization -- Better Interpretable Models for Proteomics Data Analysis Using rule-based Mining -- Probabilistic Logic Programming in Action -- Persistent topology for natural data analysis — A survey -- Predictive Models for Differentiation between Normal and Abnormal EEG through Cross-Correlation and Machine Learning Techniques -- A Brief Philosophical Note on Information -- Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline -- A Fast Semi-Automatic Segmentation Tool for Processing Brain Tumor Images -- Topological characteristics of oil and gas reservoirs and their applications -- Convolutional and Recurrent Neural Networks for Activity Recognition in Smart Environment.

The BIRS Workshop “Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets” (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of “hot topics” toward tackling the grand challenge of reaching a level of useful and useable computational intelligence with a focus on real-world problems, such as in the health domain. This encompasses learning from prior data, extracting and discovering knowledge, generalizing the results, fighting the curse of dimensionality, and ultimately disentangling the underlying explanatory factors in complex data, i.e., to make sense of data within the context of the application domain.  The workshop aimed to contribute advancements in promising novel areas such as at the intersection of machine learning and topological data analysis. History has shown that most often the overlapping areas at intersections of seemingly disparate fields are key for the stimulation of new insights and further advances. This is particularly true for the extremely broad field of machine learning.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.