Finite Element Analysis of Rotating Beams [electronic resource] : Physics Based Interpolation / by Ranjan Ganguli.
Вид матеріалу:
Текст Серія: Foundations of Engineering MechanicsПублікація: Singapore : Springer Singapore : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XII, 283 p. 108 illus., 19 illus. in color. online resourceТип вмісту: - text
- computer
- online resource
- 9789811019029
- 621.8 23
- TA213-215
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
Introduction -- Stiff String Basis Functions -- Rational Interpolation Functions -- Fourier-p Superelement -- Physics Based Basis Functions -- Collocation Approach -- Rotor Blade Finite Element -- Spectral Finite Element Method -- Violin String Shape Functions -- Appendix A: Stiffness Matrix -- Appendix B: MATLAB Code -- Appendix C: Governing Equation for Rotating Timoshenko Beam.
This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.