Spatio-Temporal Graph Data Analytics [electronic resource] / by Venkata M. V. Gunturi, Shashi Shekhar.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: X, 100 p. 61 illus., 30 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319677712
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 005.74 23
Класифікація Бібліотеки Конгресу:
  • QA76.9.D3
Електронне місцезнаходження та доступ:
Вміст:
1 Introduction -- 2 Fundamental Concepts for Spatio-Temporal Graphs -- 3 Representational Models for Spatio-Temporal Graphs -- 4 Fastest Path for a Single Departure-Time -- 5 Advanced Concepts: Critical Time Point Based Approaches -- 6 Advanced Concepts: Bi-directional Search for Temporal Digraphs -- 7 Knowledge Discovery: Temporal Disaggregation in Social Interaction Data -- 8 Trend Topics: Engine Data Analytics.
У: Springer eBooksЗведення: This book highlights some of the unique aspects of spatio-temporal graph data from the perspectives of modeling and developing scalable algorithms. The authors discuss in the first part of this book, the semantic aspects of spatio-temporal graph data in two application domains, viz., urban transportation and social networks. Then the authors present representational models and data structures, which can effectively capture these semantics, while  ensuring support for computationally scalable algorithms. In the first part of the book, the authors describe algorithmic development issues in spatio-temporal graph data. These algorithms internally use the semantically rich data structures developed in the earlier part of this book. Finally, the authors introduce some upcoming spatio-temporal graph datasets, such as engine measurement data, and discuss some open research problems in the area.  This book will be useful as a secondary text for advanced-level students entering into relevant fields of computer science, such as transportation and urban planning. It may also be useful for  researchers and practitioners in the field of navigational algorithms.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

1 Introduction -- 2 Fundamental Concepts for Spatio-Temporal Graphs -- 3 Representational Models for Spatio-Temporal Graphs -- 4 Fastest Path for a Single Departure-Time -- 5 Advanced Concepts: Critical Time Point Based Approaches -- 6 Advanced Concepts: Bi-directional Search for Temporal Digraphs -- 7 Knowledge Discovery: Temporal Disaggregation in Social Interaction Data -- 8 Trend Topics: Engine Data Analytics.

This book highlights some of the unique aspects of spatio-temporal graph data from the perspectives of modeling and developing scalable algorithms. The authors discuss in the first part of this book, the semantic aspects of spatio-temporal graph data in two application domains, viz., urban transportation and social networks. Then the authors present representational models and data structures, which can effectively capture these semantics, while  ensuring support for computationally scalable algorithms. In the first part of the book, the authors describe algorithmic development issues in spatio-temporal graph data. These algorithms internally use the semantically rich data structures developed in the earlier part of this book. Finally, the authors introduce some upcoming spatio-temporal graph datasets, such as engine measurement data, and discuss some open research problems in the area.  This book will be useful as a secondary text for advanced-level students entering into relevant fields of computer science, such as transportation and urban planning. It may also be useful for  researchers and practitioners in the field of navigational algorithms.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.