Breath Analysis for Medical Applications [electronic resource] / by David Zhang, Dongmin Guo, Ke Yan.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Singapore : Springer Singapore : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XIII, 309 p. 99 illus., 88 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9789811043222
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 502.85 23
Класифікація Бібліотеки Конгресу:
  • R858-R859.7
Електронне місцезнаходження та доступ:
Вміст:
1. Introduction -- 2. Literature Review -- 3. A Novel Breath Acquisition System Design -- 4. An LDA Based Sensor Selection Approach -- 5. Sensor Evaluation in a Breath Acquisition System -- 6. Improving the Transfer Ability of Prediction Models -- 7. Learning Classification and Regression Models for Breath Data with Drift based on Transfer Samples -- 8. A Transfer Learning Approach with Autoencoder for Correcting Instrumental Variation and Time-Varying Drift -- 9. Drift Correction using Maximum Independence Domain Adaptation -- 10. Feature Selection and Analysis on Correlated Breath Data -- 11. Breath Sample Identification by Sparse Representation-based Classification -- 12. Monitor Blood Glucose Levels via Sparse Representation Approach -- 13. Diabetics by Means of Breath Signal Analysis -- 14. A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction. 15. A Novel Medical E-Nose Signal Analysis System -- 16. Book Review and Future Work.
У: Springer eBooksЗведення: This book describes breath signal processing technologies and their applications in medical sample classification and diagnosis. First, it provides a comprehensive introduction to breath signal acquisition methods, based on different kinds of chemical sensors, together with the optimized selection and fusion acquisition scheme. It then presents preprocessing techniques, such as drift removing and feature extraction methods, and uses case studies to explore the classification methods. Lastly it discusses promising research directions and potential medical applications of computerized breath diagnosis. It is a valuable interdisciplinary resource for researchers, professionals and postgraduate students working in various fields, including breath diagnosis, signal processing, pattern recognition, and biometrics.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

1. Introduction -- 2. Literature Review -- 3. A Novel Breath Acquisition System Design -- 4. An LDA Based Sensor Selection Approach -- 5. Sensor Evaluation in a Breath Acquisition System -- 6. Improving the Transfer Ability of Prediction Models -- 7. Learning Classification and Regression Models for Breath Data with Drift based on Transfer Samples -- 8. A Transfer Learning Approach with Autoencoder for Correcting Instrumental Variation and Time-Varying Drift -- 9. Drift Correction using Maximum Independence Domain Adaptation -- 10. Feature Selection and Analysis on Correlated Breath Data -- 11. Breath Sample Identification by Sparse Representation-based Classification -- 12. Monitor Blood Glucose Levels via Sparse Representation Approach -- 13. Diabetics by Means of Breath Signal Analysis -- 14. A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction. 15. A Novel Medical E-Nose Signal Analysis System -- 16. Book Review and Future Work.

This book describes breath signal processing technologies and their applications in medical sample classification and diagnosis. First, it provides a comprehensive introduction to breath signal acquisition methods, based on different kinds of chemical sensors, together with the optimized selection and fusion acquisition scheme. It then presents preprocessing techniques, such as drift removing and feature extraction methods, and uses case studies to explore the classification methods. Lastly it discusses promising research directions and potential medical applications of computerized breath diagnosis. It is a valuable interdisciplinary resource for researchers, professionals and postgraduate students working in various fields, including breath diagnosis, signal processing, pattern recognition, and biometrics.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.