Ginzburg-Landau Vortices [electronic resource] / by Fabrice Bethuel, Haïm Brezis, Frédéric Hélein.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Modern Birkhäuser ClassicsПублікація: Cham : Springer International Publishing : Imprint: Birkhäuser, 2017Видання: 1st ed. 2017Опис: XXIX, 159 p. 5 illus., 1 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319666730
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 515.353 23
Класифікація Бібліотеки Конгресу:
  • QA370-380
Електронне місцезнаходження та доступ:
Вміст:
Introduction -- Energy Estimates for S1-Valued Maps -- A Lower Bound for the Energy of S1-Valued Maps on Perforated Domains -- Some Basic Estimates for uɛ -- Toward Locating the Singularities: Bad Discs and Good Discs -- An Upper Bound for the Energy of uɛ away from the Singularities -- uɛ_n: u-star is Born! - u-star Coincides with THE Canonical Harmonic Map having Singularities (aj) -- The Configuration (aj) Minimizes the Renormalization Energy W -- Some Additional Properties of uɛ -- Non-Minimizing Solutions of the Ginzburg-Landau Equation -- Open Problems.
У: Springer eBooksЗведення: This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy.  The location of the singularities is completely determined by minimizing the renormalized energy among all possible configurations of defects.  The limit u-star can also be viewed as a geometrical object.  It is a minimizing harmonic map into S1 with prescribed boundary condition g.  Topological obstructions imply that every map u into S1 with u = g on the boundary must have infinite energy.  Even though u-star has infinite energy, one can think of u-star as having “less” infinite energy than any other map u with u = g on the boundary. The material presented in this book covers mostly original results by the authors.  It assumes a moderate knowledge of nonlinear functional analysis, partial differential equations, and complex functions.  This book is designed for researchers and graduate students alike, and can be used as a one-semester text.  The present softcover reprint is designed to make this classic text available to a wider audience. "...the book gives a very stimulating account of an interesting minimization problem. It can be a fruitful source of ideas for those who work through the material carefully." - Alexander Mielke, Zeitschrift für angewandte Mathematik und Physik 46(5).
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Introduction -- Energy Estimates for S1-Valued Maps -- A Lower Bound for the Energy of S1-Valued Maps on Perforated Domains -- Some Basic Estimates for uɛ -- Toward Locating the Singularities: Bad Discs and Good Discs -- An Upper Bound for the Energy of uɛ away from the Singularities -- uɛ_n: u-star is Born! - u-star Coincides with THE Canonical Harmonic Map having Singularities (aj) -- The Configuration (aj) Minimizes the Renormalization Energy W -- Some Additional Properties of uɛ -- Non-Minimizing Solutions of the Ginzburg-Landau Equation -- Open Problems.

This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy.  The location of the singularities is completely determined by minimizing the renormalized energy among all possible configurations of defects.  The limit u-star can also be viewed as a geometrical object.  It is a minimizing harmonic map into S1 with prescribed boundary condition g.  Topological obstructions imply that every map u into S1 with u = g on the boundary must have infinite energy.  Even though u-star has infinite energy, one can think of u-star as having “less” infinite energy than any other map u with u = g on the boundary. The material presented in this book covers mostly original results by the authors.  It assumes a moderate knowledge of nonlinear functional analysis, partial differential equations, and complex functions.  This book is designed for researchers and graduate students alike, and can be used as a one-semester text.  The present softcover reprint is designed to make this classic text available to a wider audience. "...the book gives a very stimulating account of an interesting minimization problem. It can be a fruitful source of ideas for those who work through the material carefully." - Alexander Mielke, Zeitschrift für angewandte Mathematik und Physik 46(5).

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.