Newton’s Method: an Updated Approach of Kantorovich’s Theory [electronic resource] / by José Antonio Ezquerro Fernández, Miguel Ángel Hernández Verón.
Вид матеріалу:
Текст Серія: Frontiers in MathematicsПублікація: Cham : Springer International Publishing : Imprint: Birkhäuser, 2017Видання: 1st ed. 2017Опис: XII, 166 p. 19 illus. in color. online resourceТип вмісту: - text
- computer
- online resource
- 9783319559766
- 515.724 23
- QA329-329.9
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
The classic theory of Kantorovich -- Convergence conditions on the second derivative of the operator -- Convergence conditions on the k-th derivative of the operator -- Convergence conditions on the first derivative of the operator.
This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich's theory for Newton's method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton's method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book is addressed to researchers in computational sciences, in general, and in approximation of solutions of nonlinear problems, in particular.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.