New Era for Robust Speech Recognition [electronic resource] : Exploiting Deep Learning / edited by Shinji Watanabe, Marc Delcroix, Florian Metze, John R. Hershey.
Вид матеріалу:
Текст Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XVII, 436 p. 76 illus., 26 illus. in color. online resourceТип вмісту: - text
- computer
- online resource
- 9783319646800
- 006.3 23
- Q334-342
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
Speech and Language Processing -- Automatic Speech Recognition (ASR) -- Recent Applications -- Signal-Processing-Based Front-End for Robust ASR -- Generative Model-Based Speech Enhancement -- Denoising Autoencoder -- Discriminative Microphone Array Enhancement -- Learning Robust Feature Representation -- Training Data Augmentation -- Adaptation and Augmented Features -- Novel Model Topologies -- Novel Objective Criteria -- Benchmark Data, Tools, and Systems.
This book covers the state-of-the-art in deep neural-network-based methods for noise robustness in distant speech recognition applications. It provides insights and detailed descriptions of some of the new concepts and key technologies in the field, including novel architectures for speech enhancement, microphone arrays, robust features, acoustic model adaptation, training data augmentation, and training criteria. The contributed chapters also include descriptions of real-world applications, benchmark tools and datasets widely used in the field. This book is intended for researchers and practitioners working in the field of speech processing and recognition who are interested in the latest deep learning techniques for noise robustness. It will also be of interest to graduate students in electrical engineering or computer science, who will find it a useful guide to this field of research.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.