Wagner’s Theory of Generalised Heaps [electronic resource] / by Christopher D. Hollings, Mark V. Lawson.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XV, 189 p. 19 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319636214
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 512.2 23
Класифікація Бібліотеки Конгресу:
  • QA174-183
Електронне місцезнаходження та доступ:
Вміст:
1. Introduction -- 2. Viktor VladimirovichWagner (1908–1981) -- 3. Wagner’s work in historical context -- 4. Notes on the translations -- 5. A ternary algebraic operation in the theory of coordinate structures -- 6. On the theory of partial transformations -- 7. Generalised groups -- 8. Theory of generalised heaps and generalised groups -- 9. Generalised heaps as affine structures. - Wagner’s publications. –Index.
У: Springer eBooksЗведення: The theories of V. V. Wagner (1908-1981) on abstractions of systems of binary relations are presented here within their historical and mathematical contexts. This book contains the first translation from Russian into English of a selection of Wagner’s papers, the ideas of which are connected to present-day mathematical research. Along with a translation of Wagner’s main work in this area, his 1953 paper ‘Theory of generalised heaps and generalised groups,’ the book also includes translations of three short precursor articles that provide additional context for his major work. Researchers and students interested in both algebra (in particular, heaps, semiheaps, generalised heaps, semigroups, and groups) and differential geometry will benefit from the techniques offered by these translations, owing to the natural connections between generalised heaps and generalised groups, and the role played by these concepts in differential geometry. This book gives examples from present-day mathematics where ideas related to Wagner’s have found fruitful applications.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

1. Introduction -- 2. Viktor VladimirovichWagner (1908–1981) -- 3. Wagner’s work in historical context -- 4. Notes on the translations -- 5. A ternary algebraic operation in the theory of coordinate structures -- 6. On the theory of partial transformations -- 7. Generalised groups -- 8. Theory of generalised heaps and generalised groups -- 9. Generalised heaps as affine structures. - Wagner’s publications. –Index.

The theories of V. V. Wagner (1908-1981) on abstractions of systems of binary relations are presented here within their historical and mathematical contexts. This book contains the first translation from Russian into English of a selection of Wagner’s papers, the ideas of which are connected to present-day mathematical research. Along with a translation of Wagner’s main work in this area, his 1953 paper ‘Theory of generalised heaps and generalised groups,’ the book also includes translations of three short precursor articles that provide additional context for his major work. Researchers and students interested in both algebra (in particular, heaps, semiheaps, generalised heaps, semigroups, and groups) and differential geometry will benefit from the techniques offered by these translations, owing to the natural connections between generalised heaps and generalised groups, and the role played by these concepts in differential geometry. This book gives examples from present-day mathematics where ideas related to Wagner’s have found fruitful applications.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.