Data-Driven Remaining Useful Life Prognosis Techniques [electronic resource] : Stochastic Models, Methods and Applications / by Xiao-Sheng Si, Zheng-Xin Zhang, Chang-Hua Hu.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Springer Series in Reliability EngineeringПублікація: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XVII, 430 p. 104 illus., 84 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783662540305
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 658.56 23
Класифікація Бібліотеки Конгресу:
  • TA169.7
  • T55-55.3
Електронне місцезнаходження та доступ:
Вміст:
From the Contents: Part I Introduction, Basic Concepts and Preliminaries -- Overview -- Advances in Data-Driven Remaining Useful Life Prognosis -- Part II Remaining Useful Life Prognosis for Linear Stochastic Degrading Systems -- Part III Remaining Useful Life Prognosis for Nonlinear Stochastic Degrading Systems -- Part IV Applications of Prognostics in Decision Making -- Variable Cost-based Maintenance Model from Prognostic Information.
У: Springer eBooksЗведення: This book introduces data-driven remaining useful life prognosis techniques, and shows how to utilize the condition monitoring data to predict the remaining useful life of stochastic degrading systems and to schedule maintenance and logistics plans. It is also the first book that describes the basic data-driven remaining useful life prognosis theory systematically and in detail. The emphasis of the book is on the stochastic models, methods and applications employed in remaining useful life prognosis. It includes a wealth of degradation monitoring experiment data, practical prognosis methods for remaining useful life in various cases, and a series of applications incorporated into prognostic information in decision-making, such as maintenance-related decisions and ordering spare parts. It also highlights the latest advances in data-driven remaining useful life prognosis techniques, especially in the contexts of adaptive prognosis for linear stochastic degrading systems, nonlinear degradation modeling based prognosis, residual storage life prognosis, and prognostic information-based decision-making.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

From the Contents: Part I Introduction, Basic Concepts and Preliminaries -- Overview -- Advances in Data-Driven Remaining Useful Life Prognosis -- Part II Remaining Useful Life Prognosis for Linear Stochastic Degrading Systems -- Part III Remaining Useful Life Prognosis for Nonlinear Stochastic Degrading Systems -- Part IV Applications of Prognostics in Decision Making -- Variable Cost-based Maintenance Model from Prognostic Information.

This book introduces data-driven remaining useful life prognosis techniques, and shows how to utilize the condition monitoring data to predict the remaining useful life of stochastic degrading systems and to schedule maintenance and logistics plans. It is also the first book that describes the basic data-driven remaining useful life prognosis theory systematically and in detail. The emphasis of the book is on the stochastic models, methods and applications employed in remaining useful life prognosis. It includes a wealth of degradation monitoring experiment data, practical prognosis methods for remaining useful life in various cases, and a series of applications incorporated into prognostic information in decision-making, such as maintenance-related decisions and ordering spare parts. It also highlights the latest advances in data-driven remaining useful life prognosis techniques, especially in the contexts of adaptive prognosis for linear stochastic degrading systems, nonlinear degradation modeling based prognosis, residual storage life prognosis, and prognostic information-based decision-making.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.