From Riemann to Differential Geometry and Relativity [electronic resource] / edited by Lizhen Ji, Athanase Papadopoulos, Sumio Yamada.

Інтелектуальна відповідальність: Вид матеріалу: Текст Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XXXIV, 647 p. 24 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319600390
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 510.9 23
Класифікація Бібліотеки Конгресу:
  • QA21-27
Електронне місцезнаходження та доступ:
Вміст:
Preface -- Introduction -- 1.Athanase Papadopoulos: Looking backward: From Euler to Riemann -- 2.Jeremey Gray: Riemann on geometry, physics, and philosophy – some remarks -- 3.Hubert Goenner: Some remarks on a contribution to electrodynamics by Bernhard Riemann -- 4.Christian Houzel: Riemann's Memoir Über das Verschwinden der Theta-Functionen -- 5.Sumio Yamada: Riemann's work on minimal surfaces -- 6. Athanase Papadopoulos: Physics in Riemann's mathematical papers -- 7.Athanase Papadopoulos: Cauchy and Puiseux: Two precursors of Riemann -- 8.Athanase Papadopoulos: Riemann surfaces: Reception by the French school -- 9.Ken'ichi Ohshika: The origin of the notion of manifold: from Riemann's Habilitationsvortrag onward -- 10.Franck Jedrzejewski: Deleuze et la géométrie riemannienne : une topologie des multiplicités -- 11.Arkady Plotnitsky: Comprehending the Connection of Things: Bernhard Riemann and the Architecture of Mathematical Concepts -- 12.Feng Luo: The Riemann mapping theorem and its discrete counterparts -- 13.Norbert A'Campo, Vincent Alberge and Elena Frenkel: The Riemann–Roch theorem -- 14.Victor Pambuccian, Horst Struve and Rolf Struve: Metric geometries in an axiomatic perspective -- 15.Toshikazu Sunada: Generalized Riemann sums -- 16.Jacques Franchi: From Riemannian to Relativistic Diffusions -- 17.Andreas Hermann and Emmanuel Humbert: On the Positive Mass Theorem for closed Riemannian manifolds -- 18.Marc Mars: On local characterization results in geometry and gravitation -- 19.Jean-Philippe Nicolas: The conformal approach to asymptotic analysis -- 20.Lizhen Ji: Bernhard Riemann and his work.
У: Springer eBooksЗведення: This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Preface -- Introduction -- 1.Athanase Papadopoulos: Looking backward: From Euler to Riemann -- 2.Jeremey Gray: Riemann on geometry, physics, and philosophy – some remarks -- 3.Hubert Goenner: Some remarks on a contribution to electrodynamics by Bernhard Riemann -- 4.Christian Houzel: Riemann's Memoir Über das Verschwinden der Theta-Functionen -- 5.Sumio Yamada: Riemann's work on minimal surfaces -- 6. Athanase Papadopoulos: Physics in Riemann's mathematical papers -- 7.Athanase Papadopoulos: Cauchy and Puiseux: Two precursors of Riemann -- 8.Athanase Papadopoulos: Riemann surfaces: Reception by the French school -- 9.Ken'ichi Ohshika: The origin of the notion of manifold: from Riemann's Habilitationsvortrag onward -- 10.Franck Jedrzejewski: Deleuze et la géométrie riemannienne : une topologie des multiplicités -- 11.Arkady Plotnitsky: Comprehending the Connection of Things: Bernhard Riemann and the Architecture of Mathematical Concepts -- 12.Feng Luo: The Riemann mapping theorem and its discrete counterparts -- 13.Norbert A'Campo, Vincent Alberge and Elena Frenkel: The Riemann–Roch theorem -- 14.Victor Pambuccian, Horst Struve and Rolf Struve: Metric geometries in an axiomatic perspective -- 15.Toshikazu Sunada: Generalized Riemann sums -- 16.Jacques Franchi: From Riemannian to Relativistic Diffusions -- 17.Andreas Hermann and Emmanuel Humbert: On the Positive Mass Theorem for closed Riemannian manifolds -- 18.Marc Mars: On local characterization results in geometry and gravitation -- 19.Jean-Philippe Nicolas: The conformal approach to asymptotic analysis -- 20.Lizhen Ji: Bernhard Riemann and his work.

This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.