Big Data Factories [electronic resource] : Collaborative Approaches / edited by Sorin Adam Matei, Nicolas Jullien, Sean P. Goggins.

Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Computational Social SciencesПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: VI, 141 p. 18 illus., 14 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319591865
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 006.312 23
Класифікація Бібліотеки Конгресу:
  • QA76.9.D343
Електронне місцезнаходження та доступ:
Вміст:
Chapter1. Introduction -- Part 1: Theoretical Principles and Approaches to Data Factories --  Chapter2. Accessibility and Flexibility: Two Organizing Principles for Big Data Collaboration -- Chapter3. The Open Community Data Exchange: Advancing Data Sharing and Discovery in Open Online Community Science -- Part 2: Theoretical principles and ideas for designing and deploying data factory approaches -- Chapter4. Levels of Trace Data for Social and Behavioral Science Research -- Chapter5. The 10 Adoption Drivers of Open Source Software that Enables e-Research in Data Factories for Open Innovations -- Chapter6. Aligning online social collaboration data around social order: theoretical considerations and measures -- Part 3: Approaches in action through case studies of data based research, best practice scenarios, or educational briefs -- Chapter7. Lessons learned from a decade of FLOSS data collection -- Chapter8. Teaching Students How (NOT) to Lie, Manipulate, and Mislead with Information Visualizations -- Chapter9. Democratizing Data Science: The Community Data Science Workshops and Classes.
У: Springer eBooksЗведення: The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as part of a broader data ecosystem, easily accessible and exploitable by parties not directly involved with data collection and documentation. Furthermore, data factoring uses and encourages pre-analytic operations that add value to big data sets, especially recombining and repurposing. The book proposes a research-development agenda that can undergird an ideal data factory approach. Several programmatic chapters discuss specialized issues involved in data factoring (documentation, meta-data specification, building flexible, yet comprehensive data ontologies, usability issues involved in collaborative tools, etc.). The book also presents case studies for data factoring and processing that can lead to building better scientific collaboration and data sharing strategies and tools. Finally, the book presents the teaching utility of data factoring and the ethical and privacy concerns related to it. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Chapter1. Introduction -- Part 1: Theoretical Principles and Approaches to Data Factories --  Chapter2. Accessibility and Flexibility: Two Organizing Principles for Big Data Collaboration -- Chapter3. The Open Community Data Exchange: Advancing Data Sharing and Discovery in Open Online Community Science -- Part 2: Theoretical principles and ideas for designing and deploying data factory approaches -- Chapter4. Levels of Trace Data for Social and Behavioral Science Research -- Chapter5. The 10 Adoption Drivers of Open Source Software that Enables e-Research in Data Factories for Open Innovations -- Chapter6. Aligning online social collaboration data around social order: theoretical considerations and measures -- Part 3: Approaches in action through case studies of data based research, best practice scenarios, or educational briefs -- Chapter7. Lessons learned from a decade of FLOSS data collection -- Chapter8. Teaching Students How (NOT) to Lie, Manipulate, and Mislead with Information Visualizations -- Chapter9. Democratizing Data Science: The Community Data Science Workshops and Classes.

The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as part of a broader data ecosystem, easily accessible and exploitable by parties not directly involved with data collection and documentation. Furthermore, data factoring uses and encourages pre-analytic operations that add value to big data sets, especially recombining and repurposing. The book proposes a research-development agenda that can undergird an ideal data factory approach. Several programmatic chapters discuss specialized issues involved in data factoring (documentation, meta-data specification, building flexible, yet comprehensive data ontologies, usability issues involved in collaborative tools, etc.). The book also presents case studies for data factoring and processing that can lead to building better scientific collaboration and data sharing strategies and tools. Finally, the book presents the teaching utility of data factoring and the ethical and privacy concerns related to it. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.