The Earth's Lower Mantle [electronic resource] : Composition and Structure / by Felix V. Kaminsky.
Вид матеріалу:
Текст Серія: Springer GeologyПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XIII, 331 p. 150 illus., 131 illus. in color. online resourceТип вмісту: - text
- computer
- online resource
- 9783319556840
- 551.9 23
- QE514-516.5
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
Introduction: History of the problem.- Models of the Earth’s mantle -- High-pressure experimental data on ultramafic and mafic systems -- Natural lower-mantle minerals.- Lower-mantle mineral associations.- Some problems in the mineral composition of the lower mantle.- Iron spin crossover in lower mantle minerals.- Phase transitions in lower-mantle minerals.- Crystallographic features (regularities) of lower-mantle mineral phases.- Changes in properties of chemical elements under high pressures and possible new mineral compounds in Deep Earth.- Seismic inhomogeneities in the lower mantle and their nature -- Local inhomogeneities in the lower mantle.- Geochemistry of the lower mantle.- Oxidation potential in the lower mantle.- D" layer: transition from the lower mantle to the Earth’s core. (Postperovskite and other minerals in the D" layer).- Conclusions, Compositional model of the lower mantle, and further problems.- References.- Subject index.
This book presents the first overview of the composition and structure of the Earth’s lower mantle. The first part focuses on the study of lower-mantle minerals, identified as inclusions in diamonds from different regions of the world. Three associations are established among the lower-mantle minerals: ultramafic, mafic, and carbonatic. The carbonatic association is of particular interest because it characterizes the media of natural diamond formation. In turn, the second part analyzes the structure of the lower mantle, revealing its heterogeneous composition. It is based on the results of experiments demonstrating phase transitions in lower-mantle minerals, and on seismological data. Deep-seated earthquakes point to the presence within the lower mantle of numerous seismic boundaries caused by mineral structure transitions. In closing, the last part of the book compares observed data with experimental data, highlighting several discrepancies that indicate Earth may have a more complex planetary history than previously assumed, and examining its primarily non-chondritic composition.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.