Applied Mathematics & Optimization [electronic resource] / edited by Irena Lasiecka, Huyên Pham.

Інтелектуальна відповідальність: Вид матеріалу: Серіальне виданняПублікація: New York : Springer US : Imprint: Springer.Опис: online resourceISSN:
  • 1432-0606
Тематика(и): Додаткові фізичні формати: Printed version: : Немає назвиЕлектронне місцезнаходження та доступ: Зведення: Statement of Scope The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Papers considered for publication must contain significant contributions and applications from a mathematical perspective. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and mathematical analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
Тип одиниці: ЕЖурнал Списки з цим бібзаписом: Springer EJournals (till 2020.02 Network Access) | Springer EJournals till 2020.02 (Open Access + Network Access)
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Statement of Scope The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Papers considered for publication must contain significant contributions and applications from a mathematical perspective. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and mathematical analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.