Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes [electronic resource] / by Michel Bercovier, Tanya Matskewich.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Lecture Notes of the Unione Matematica Italiana ; 22Публікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XX, 192 p. 64 illus., 59 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783319638416
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 518 23
Класифікація Бібліотеки Конгресу:
  • QA71-90
Електронне місцезнаходження та доступ:
Вміст:
Introduction -- G1-smooth Surfaces -- C1 smooth surfaces -- MDSs: quadrilateral meshes -- Global MDSs -- MDSs for a smooth boundary -- Computational examples -- Conclusions -- Two-patch geometry and the G1 construction -- Illustrations for the thin plate problem -- Mixed MDSs of degrees 4 and 5 -- Technical lemmas -- Minimisation problems -- G1 is equivalent to C1 -- Bibliography -- References.
У: Springer eBooksЗведення: Using an elegant mixture of geometry, graph theory and linear analysis, this monograph completely solves a problem lying at the interface of Isogeometric Analysis (IgA) and Finite Element Methods (FEM). The recent explosion of IgA, strongly tying Computer Aided Geometry Design to Analysis, does not easily apply to the rich variety of complex shapes that engineers have to design and analyse. Therefore new developments have studied the extension of IgA to unstructured unions of meshes, similar to those one can find in FEM. The following problem arises: given an unstructured planar quadrilateral mesh, construct a C1-surface, by piecewise Bézier or B-Spline patches defined over this mesh. This problem is solved for C1-surfaces defined over plane bilinear Bézier patches, the corresponding results for B-Splines then being simple consequences. The method can be extended to higher-order quadrilaterals and even to three dimensions, and the most recent developments in this direction are also mentioned here.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Introduction -- G1-smooth Surfaces -- C1 smooth surfaces -- MDSs: quadrilateral meshes -- Global MDSs -- MDSs for a smooth boundary -- Computational examples -- Conclusions -- Two-patch geometry and the G1 construction -- Illustrations for the thin plate problem -- Mixed MDSs of degrees 4 and 5 -- Technical lemmas -- Minimisation problems -- G1 is equivalent to C1 -- Bibliography -- References.

Using an elegant mixture of geometry, graph theory and linear analysis, this monograph completely solves a problem lying at the interface of Isogeometric Analysis (IgA) and Finite Element Methods (FEM). The recent explosion of IgA, strongly tying Computer Aided Geometry Design to Analysis, does not easily apply to the rich variety of complex shapes that engineers have to design and analyse. Therefore new developments have studied the extension of IgA to unstructured unions of meshes, similar to those one can find in FEM. The following problem arises: given an unstructured planar quadrilateral mesh, construct a C1-surface, by piecewise Bézier or B-Spline patches defined over this mesh. This problem is solved for C1-surfaces defined over plane bilinear Bézier patches, the corresponding results for B-Splines then being simple consequences. The method can be extended to higher-order quadrilaterals and even to three dimensions, and the most recent developments in this direction are also mentioned here.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.