Interpretative Aspects of Quantum Mechanics [electronic resource] : Matteo Campanella's Mathematical Studies / by Matteo Campanella, David Jou, Maria Stella Mongiovì.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: UNIPA Springer SeriesПублікація: Cham : Springer International Publishing : Imprint: Springer, 2020Видання: 1st ed. 2020Опис: XV, 143 p. 2 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9783030442071
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 519 23
Класифікація Бібліотеки Конгресу:
  • QC19.2-20.85
Електронне місцезнаходження та доступ:
Вміст:
1 Fundamental assumptions -- 2 The state of a quantum system as a subsystem of a composite system -- 3 Relation between the state of a system as isolated and as open -- 4 Universality of the probability function -- 5 Appendix A -- 6 Appendix B -- 7 Appendix C -- 8 Appendix D.
У: Springer Nature eBookЗведення: This book presents a selection of Prof. Matteo Campanella’s writings on the interpretative aspects of quantum mechanics and on a possible derivation of Born's rule – one of the key principles of the probabilistic interpretation of quantum mechanics – that is independent of any priori probabilistic interpretation. This topic is of fundamental interest, and as such is currently an active area of research. Starting from a natural method of defining such a state, Campanella found that it can be characterized through a partial density operator, which occurs as a consequence of the formalism and of a number of reasonable assumptions connected with the notion of a state. The book demonstrates that the density operator arises as an orbit invariant that has to be interpreted as probabilistic, and that its quantitative implementation is equivalent to Born's rule. The appendices present various mathematical details, which would have interrupted the continuity of the discussion if they had been included in the main text. For instance, they discuss baricentric coordinates, mapping between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a linear space under the action of its structure group, and the class of Hilbert space as a category.
Тип одиниці:
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

1 Fundamental assumptions -- 2 The state of a quantum system as a subsystem of a composite system -- 3 Relation between the state of a system as isolated and as open -- 4 Universality of the probability function -- 5 Appendix A -- 6 Appendix B -- 7 Appendix C -- 8 Appendix D.

This book presents a selection of Prof. Matteo Campanella’s writings on the interpretative aspects of quantum mechanics and on a possible derivation of Born's rule – one of the key principles of the probabilistic interpretation of quantum mechanics – that is independent of any priori probabilistic interpretation. This topic is of fundamental interest, and as such is currently an active area of research. Starting from a natural method of defining such a state, Campanella found that it can be characterized through a partial density operator, which occurs as a consequence of the formalism and of a number of reasonable assumptions connected with the notion of a state. The book demonstrates that the density operator arises as an orbit invariant that has to be interpreted as probabilistic, and that its quantitative implementation is equivalent to Born's rule. The appendices present various mathematical details, which would have interrupted the continuity of the discussion if they had been included in the main text. For instance, they discuss baricentric coordinates, mapping between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a linear space under the action of its structure group, and the class of Hilbert space as a category.

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.