Data-Driven Technology for Engineering Systems Health Management [electronic resource] : Design Approach, Feature Construction, Fault Diagnosis, Prognosis, Fusion and Decisions / by Gang Niu.
Вид матеріалу:
Текст Публікація: Singapore : Springer Singapore : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XIII, 357 p. 204 illus. online resourceТип вмісту: - text
- computer
- online resource
- 9789811020322
- Quality control
- Reliability
- Industrial safety
- Computer system failures
- Applied mathematics
- Engineering mathematics
- Data mining
- Pattern recognition
- Quality Control, Reliability, Safety and Risk
- System Performance and Evaluation
- Applications of Mathematics
- Data Mining and Knowledge Discovery
- Pattern Recognition
- 658.56 23
- TA169.7
- T55-55.3
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
Background of Systems Health Management -- Design Approach for Systems Health Management -- Overview of Data-driven PHM -- Data Acquisition and Preprocessing -- Statistic Feature Extraction -- Feature Selection Optimization -- Intelligent Fault Diagnosis Methodology -- Science of Prognostics -- Data Fusion Strategy -- System Support and Logistics.
This book introduces condition-based maintenance (CBM)/data-driven prognostics and health management (PHM) in detail, first explaining the PHM design approach from a systems engineering perspective, then summarizing and elaborating on the data-driven methodology for feature construction, as well as feature-based fault diagnosis and prognosis. The book includes a wealth of illustrations and tables to help explain the algorithms, as well as practical examples showing how to use this tool to solve situations for which analytic solutions are poorly suited. It equips readers to apply the concepts discussed in order to analyze and solve a variety of problems in PHM system design, feature construction, fault diagnosis and prognosis.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.