Data Science [electronic resource] : Innovative Developments in Data Analysis and Clustering / edited by Francesco Palumbo, Angela Montanari, Maurizio Vichi.
Вид матеріалу:
Текст Серія: Studies in Classification, Data Analysis, and Knowledge OrganizationПублікація: Cham : Springer International Publishing : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XVI, 342 p. 50 illus., 39 illus. in color. online resourceТип вмісту: - text
- computer
- online resource
- 9783319557236
- Statistics
- Data mining
- Big data
- Statistical Theory and Methods
- Data Mining and Knowledge Discovery
- Statistics and Computing/Statistics Programs
- Big Data
- Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
- Statistics for Business, Management, Economics, Finance, Insurance
- 519.5 23
- QA276-280
ЕКнига
Списки з цим бібзаписом:
Springer Ebooks (till 2020 - Open Access)+(2017 Network Access))
|
Springer Ebooks (2017 Network Access))
Preface -- Part I: Classification Methods for High-Dimensional Data -- Scientific Contributions -- Part II: Clustering Methods and Applications -- Scientific Contributions -- Part III: Multivariate Methods and Applications -- Scientific Contributions.
This edited volume on the latest advances in data science covers a wide range of topics in the context of data analysis and classification. In particular, it includes contributions on classification methods for high-dimensional data, clustering methods, multivariate statistical methods, and various applications. The book gathers a selection of peer-reviewed contributions presented at the Fifteenth Conference of the International Federation of Classification Societies (IFCS2015), which was hosted by the Alma Mater Studiorum, University of Bologna, from July 5 to 8, 2015.
Available to subscribing member institutions only. Доступно лише організаціям членам підписки.
Online access from local network of NaUOA.
Online access with authorization at https://link.springer.com/
Онлайн-доступ з локальної мережі НаУОА.
Онлайн доступ з авторизацією на https://link.springer.com/
Немає коментарів для цієї одиниці.