Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws [electronic resource] / by Phoolan Prasad.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Infosys Science Foundation Series in Mathematical SciencesПублікація: Singapore : Springer Singapore : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XI, 159 p. 40 illus. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9789811075810
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 515.353 23
Класифікація Бібліотеки Конгресу:
  • QA370-380
Електронне місцезнаходження та доступ:
Вміст:
Introduction -- Single first-order PDE -- Single conservation law -- Systems of hyperbolic PDE and conservation laws -- Propagation of nonlinear wave and shock -- Kinematical conservation laws (KCL) -- Conservation forms of energy transport equations -- 2-D KCL, WNLRT and SRT -- 2-D WNLRT and SRT - some applications -- 3-D WNLRT and SRT: Theory and Applications -- Appendix and Notations.
У: Springer eBooksЗведення: This book formulates the kinematical conservation laws (KCL), analyses them and presents their applications to various problems in physics. Finally, it addresses one of the most challenging problems in fluid dynamics: finding successive positions of a curved shock front. The topics discussed are the outcome of collaborative work that was carried out mainly at the Indian Institute of Science, Bengaluru, India. The theory presented in the book is supported by referring to extensive numerical results. The book is organised into ten chapters. Chapters 1–4 offer a summary of and briefly discuss the theory of hyperbolic partial differential equations and conservation laws. Formulation of equations of a weakly nonlinear wavefront and those of a shock front are briefly explained in Chapter 5, while Chapter 6 addresses KCL theory in space of arbitrary dimensions. The remaining chapters examine various analyses and applications of KCL equations ending in the ultimate goal-propagation of a three-dimensional curved shock front and formation, propagation and interaction of kink lines on it.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Introduction -- Single first-order PDE -- Single conservation law -- Systems of hyperbolic PDE and conservation laws -- Propagation of nonlinear wave and shock -- Kinematical conservation laws (KCL) -- Conservation forms of energy transport equations -- 2-D KCL, WNLRT and SRT -- 2-D WNLRT and SRT - some applications -- 3-D WNLRT and SRT: Theory and Applications -- Appendix and Notations.

This book formulates the kinematical conservation laws (KCL), analyses them and presents their applications to various problems in physics. Finally, it addresses one of the most challenging problems in fluid dynamics: finding successive positions of a curved shock front. The topics discussed are the outcome of collaborative work that was carried out mainly at the Indian Institute of Science, Bengaluru, India. The theory presented in the book is supported by referring to extensive numerical results. The book is organised into ten chapters. Chapters 1–4 offer a summary of and briefly discuss the theory of hyperbolic partial differential equations and conservation laws. Formulation of equations of a weakly nonlinear wavefront and those of a shock front are briefly explained in Chapter 5, while Chapter 6 addresses KCL theory in space of arbitrary dimensions. The remaining chapters examine various analyses and applications of KCL equations ending in the ultimate goal-propagation of a three-dimensional curved shock front and formation, propagation and interaction of kink lines on it.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.