Differential Geometry and Mathematical Physics [electronic resource] : Part II. Fibre Bundles, Topology and Gauge Fields / by Gerd Rudolph, Matthias Schmidt.

За: Інтелектуальна відповідальність: Вид матеріалу: Текст Серія: Theoretical and Mathematical PhysicsПублікація: Dordrecht : Springer Netherlands : Imprint: Springer, 2017Видання: 1st ed. 2017Опис: XVI, 830 p. 15 illus., 2 illus. in color. online resourceТип вмісту:
  • text
Тип засобу:
  • computer
Тип носія:
  • online resource
ISBN:
  • 9789402409598
Тематика(и): Додаткові фізичні формати: Printed edition:: Немає назви; Printed edition:: Немає назви; Printed edition:: Немає назвиДесяткова класифікація Дьюї:
  • 530.15 23
Класифікація Бібліотеки Конгресу:
  • QC5.53
Електронне місцезнаходження та доступ:
Вміст:
Fibre bundles and connections -- Linear connections and Riemannian geometry -- Homotopy theory of principal fibre bundles. Classification -- Cohomology theory of fibre bundles. Characteristic classes -- Clifford algebras, spin structures and Dirac operators -- The Yang-Mills equation -- Matter fields and model building -- The gauge orbit space -- Elements of quantum gauge theory -- A Field restriction and field extension -- B The Conformal Group of the 4-sphere -- C Simple Lie algebras. Root diagrams -- D z -function regularization -- E K-theory and index bundles -- F Determinant line bundles -- G Eilenberg-MacLane spaces -- References. Index.
У: Springer eBooksЗведення: The book is devoted to the study of the geometrical and topological structure of gauge theories. It consists of the following three building blocks: - Geometry and topology of fibre bundles, - Clifford algebras, spin structures and Dirac operators, - Gauge theory. Written in the style of a mathematical textbook, it combines a comprehensive presentation of the mathematical foundations with a discussion of a variety of advanced topics in gauge theory. The first building block includes a number of specific topics, like invariant connections, universal connections, H-structures and the Postnikov approximation of classifying spaces. Given the great importance of Dirac operators in gauge theory, a complete proof of the Atiyah-Singer Index Theorem is presented. The gauge theory part contains the study of Yang-Mills equations (including the theory of instantons and the classical stability analysis), the discussion of various models with matter fields (including magnetic monopoles, the Seiberg-Witten model and dimensional reduction) and the investigation of the structure of the gauge orbit space. The final chapter is devoted to elements of quantum gauge theory including the discussion of the Gribov problem, anomalies and the implementation of the non-generic gauge orbit strata in the framework of Hamiltonian lattice gauge theory. The book is addressed both to physicists and mathematicians. It is intended to be accessible to students starting from a graduate level.
Тип одиниці: ЕКнига Списки з цим бібзаписом: Springer Ebooks (till 2020 - Open Access)+(2017 Network Access)) | Springer Ebooks (2017 Network Access))
Мітки з цієї бібліотеки: Немає міток з цієї бібліотеки для цієї назви. Ввійдіть, щоб додавати мітки.
Оцінки зірочками
    Середня оцінка: 0.0 (0 голос.)
Немає реальних примірників для цього запису

Fibre bundles and connections -- Linear connections and Riemannian geometry -- Homotopy theory of principal fibre bundles. Classification -- Cohomology theory of fibre bundles. Characteristic classes -- Clifford algebras, spin structures and Dirac operators -- The Yang-Mills equation -- Matter fields and model building -- The gauge orbit space -- Elements of quantum gauge theory -- A Field restriction and field extension -- B The Conformal Group of the 4-sphere -- C Simple Lie algebras. Root diagrams -- D z -function regularization -- E K-theory and index bundles -- F Determinant line bundles -- G Eilenberg-MacLane spaces -- References. Index.

The book is devoted to the study of the geometrical and topological structure of gauge theories. It consists of the following three building blocks: - Geometry and topology of fibre bundles, - Clifford algebras, spin structures and Dirac operators, - Gauge theory. Written in the style of a mathematical textbook, it combines a comprehensive presentation of the mathematical foundations with a discussion of a variety of advanced topics in gauge theory. The first building block includes a number of specific topics, like invariant connections, universal connections, H-structures and the Postnikov approximation of classifying spaces. Given the great importance of Dirac operators in gauge theory, a complete proof of the Atiyah-Singer Index Theorem is presented. The gauge theory part contains the study of Yang-Mills equations (including the theory of instantons and the classical stability analysis), the discussion of various models with matter fields (including magnetic monopoles, the Seiberg-Witten model and dimensional reduction) and the investigation of the structure of the gauge orbit space. The final chapter is devoted to elements of quantum gauge theory including the discussion of the Gribov problem, anomalies and the implementation of the non-generic gauge orbit strata in the framework of Hamiltonian lattice gauge theory. The book is addressed both to physicists and mathematicians. It is intended to be accessible to students starting from a graduate level.

Available to subscribing member institutions only. Доступно лише організаціям членам підписки.

Online access from local network of NaUOA.

Online access with authorization at https://link.springer.com/

Онлайн-доступ з локальної мережі НаУОА.

Онлайн доступ з авторизацією на https://link.springer.com/

Немає коментарів для цієї одиниці.

для можливості публікувати коментарі.